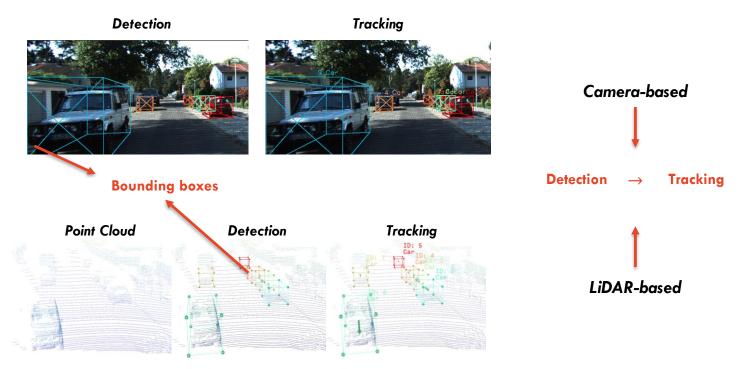
A Dynamic-confidence 3D Multi-Object Tracking Method Based on Spatio-Temporal Association

Ruihao ZENG and Mohsen RAMEZANI

The University of Sydney

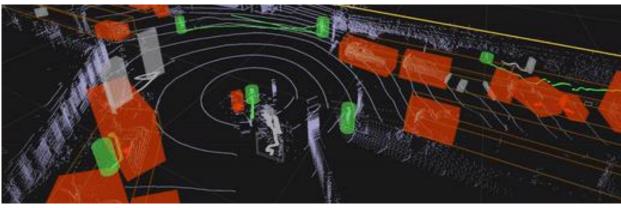
What is multi-object tracking

Environmental perception \rightarrow AVs decision-making



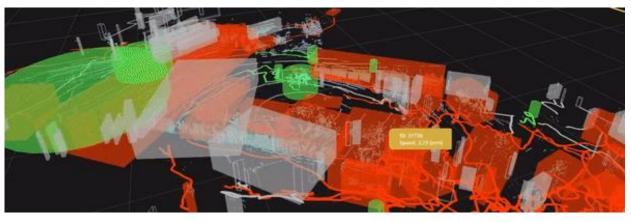
Implementation

LiDAR - fixed



Collected on 30-March-2023 and 09-March-2023.

Implementation



LiDAR - moving

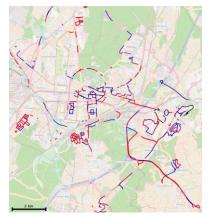
Most of the targets remain stationary.

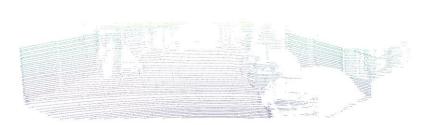
Collected on 30-March-2023 and 09-March-2023.

Research Challenges

- **Reliable** data association while moving without color, shape, material information, etc.
- Complete tracking as fast as possible in **real time**.
- **Continuous** tracking capability when the object is obscured or missed temporarily.

Dataset - KITTI





Point cloud as raw data.

Recording zone. Metropolitan area of Karlsruhe, Germany.

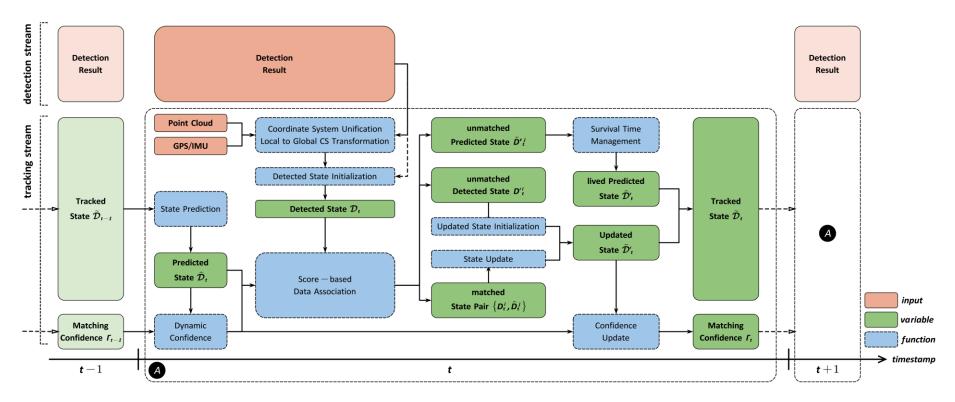
From "Vision meets Robotics: The KITTI Dataset" and the KITTI dataset.

Image for ground truth (annotation).

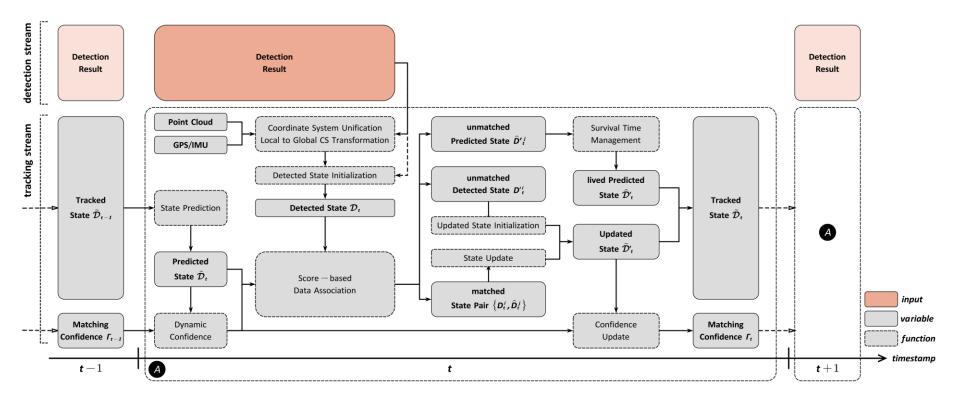
Recording platform. 1 LiDAR, 4 cameras, 1 GPS/IMU.

A Dynamic-confidence 3D Multi-Object Tracking Method Based on Spatio-Temporal Association Ruihao ZENG and Mohsen RAMEZANI

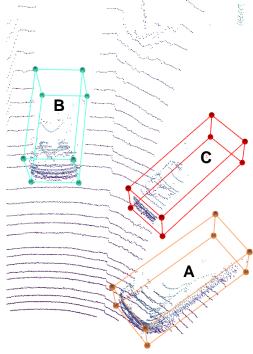
Proposed MOT framework



Detection stream



Detection result - example

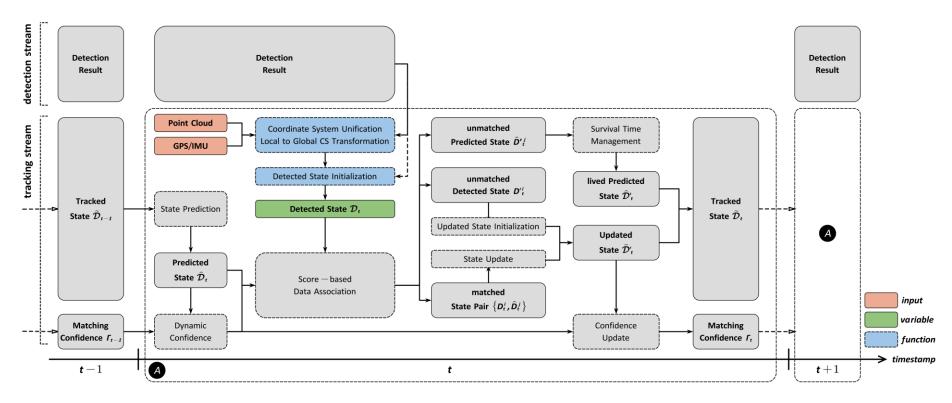


Part of detection results.

Deserved	Value					
Parameter	Object A	Object B	Object C			
Label	Car	Car	Car			
Truncated	-1	-1	-1			
Occlude	-1	-1	-1			
Observation angle (radian measure)	-7.5146	-7.8332	-7.4890			
2D Bounding Box X_min (camera-CS)	890.1342	556.6973	814.2166			
2D Bounding Box Y_min (camera-CS)	146.5483	173.5228	175.5845			
2D Bounding Box X_max (camera-CS)	1241.0000	669.5584	1026.1429			
2D Bounding Box Y_max (camera-CS)	374.0000	280.0149	293.4225			
3D Bounding Box height (meter)	1.5791	1.5593	1.3754			
3D Bounding Box width (meter)	1.6725	1.6592	1.5274			
3D Bounding Box length (meter)	4.0309	3.6525	3.9645			
3D Center Point X (LiDAR-CS)	4.3920	0.0286	4.5773			
3D Center Point Y (LiDAR-CS)	6.6461	12.4317	10.4703			
3D Center Point Z (LiDAR-CS)	1.4059	1.5722	1.4221			
Yaw/Orientation (radian measure)	-6.9514	-7.8323	-7.0879			
Detection score	7.0113	6.3238	5.2618			

Be saved in .txt format.

CS transformation & Detected state initialization



Detected state initialization

Each of the included elements in the detected state represents the **detected information** of one bounding box.

$$D_{t}^{i} = \left[x_{t}^{i}, y_{t}^{i}, z_{t}^{i}, \dot{x}_{t}^{i}, \dot{y}_{t}^{i}, \dot{z}_{t}^{i}, \ddot{x}_{t}^{i}, \ddot{y}_{t}^{i}, \ddot{z}_{t}^{i}, w_{t}^{i}, h_{t}^{i}, l_{t}^{i}, \theta_{t}^{i}, \dot{\theta}_{t}^{i}, \ddot{\theta}_{t}^{i}, f_{t}^{i,1}, \cdots, f_{t}^{i,\xi} \right]^{T}$$

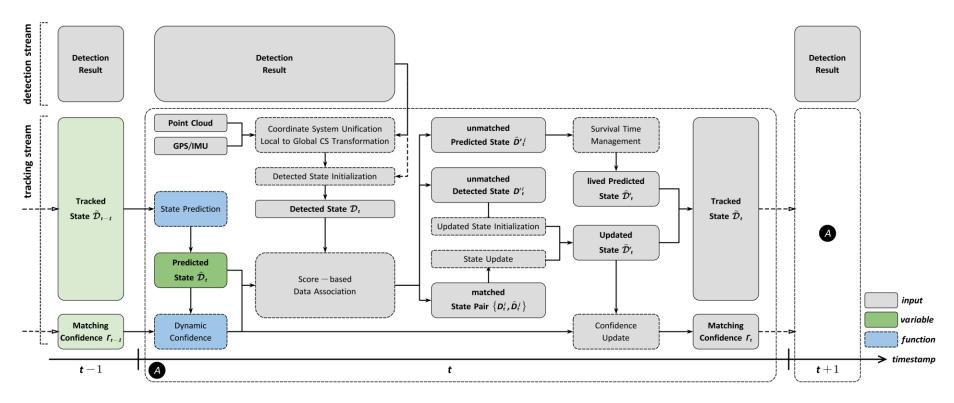
All detection methods treat objects at various timestamps as **separate** and **unrelated** entities. Velocity and acceleration, which are derived from temporal changes in object positions, aren't included in the detection results.

$$D^{*i}_{t} = \left[x^{i}_{t}, y^{i}_{t}, z^{i}_{t}, w^{i}_{t}, h^{i}_{t}, l^{i}_{t}, \theta^{i}_{t}\right]^{T}$$
$$\operatorname{Init}\left(D^{*i}_{t}\right) \rightarrow \begin{cases} \dot{x}^{i}_{t}, \dot{y}^{i}_{t}, \dot{z}^{i}_{t} = 0\\ \ddot{x}^{i}_{t}, \ddot{y}^{i}_{t}, \ddot{z}^{i}_{t} = 0\\ \dot{\theta}^{i}_{t} = \ddot{\theta}^{i}_{t} = 0 \end{cases}$$

Detected State Initialization

Detected State \mathcal{D}_{r}

State prediction & Dynamic confidence



CMTA prediction model

State Prediction Predicted State \hat{D}_r

Constant Moving and Turning Acceleration:

Assumption 1: In the prediction phase, accelerations and angular acceleration are **constant** in all directions. Assumption 2: Variables and independent are following **Gaussian distribution**.

$$\begin{bmatrix} x_{t}^{i}, y_{t}^{i}, z_{t}^{i}, \dot{x}_{t}^{i}, \dot{y}_{t}^{i}, \dot{z}_{t}^{i}, \ddot{x}_{t}^{i}, \ddot{y}_{t}^{i}, \ddot{z}_{t}^{i}, w_{t}^{i}, h_{t}^{i}, l_{t}^{i} \theta_{t}^{i}, \dot{\theta}_{t}^{i} \\ \downarrow \\ \begin{bmatrix} \hat{x}_{t+1}^{i}, \hat{y}_{t+1}^{i}, \hat{z}_{t+1}^{i}, \hat{x}_{t+1}^{i}, \hat{y}_{t+1}^{i}, \hat{z}_{t+1}^{i} \\ \hat{x}_{t+1}^{i}, \hat{y}_{t+1}^{i}, \hat{z}_{t+1}^{i}, \hat{w}_{t+1}^{i}, \hat{h}_{t+1}^{i}, \hat{l}_{t+1}^{i} \\ \theta_{t+1}^{i}, \hat{\theta}_{t+1}^{i} \\ \theta_{t+1}^{i} \end{bmatrix}^{T}$$

Dynamic confidence

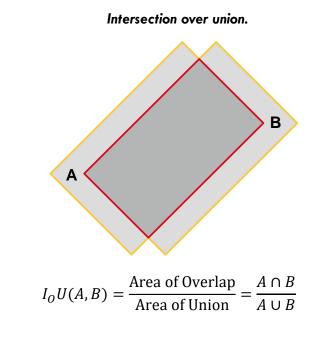
The **more** predictions it makes, the **less** reliable the predictions are.

Predict:

$$\hat{\gamma}_{t+1}^{i} = \begin{cases} 1 & t = 0 \text{ or } \hat{D}_{t}^{*i} = \emptyset \\ I_{O}U(\hat{D}_{t}^{*i}, D_{t}^{*i}) \cdot \hat{\gamma}_{t}^{i} & I_{O}U(\hat{D}_{t}^{*i}, D_{t}^{*i})) \ge 1 - \mu \\ (1 - \mu) \cdot \hat{\gamma}_{t}^{i} & \text{otherwise} \end{cases}$$

Update:

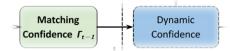
$$\gamma_{t+1}^{i} = \begin{cases} 1 & \sigma_{t}^{i'} = 0 \text{ and } \sigma_{t+1}^{i'} \neq 0 \\ \gamma_{t+1}^{i} & D_{t+1}^{i} = \emptyset \\ \hat{\gamma}_{t+1}^{i} + \left(1 - I_{O}U\left(\tilde{D}'_{t}^{i}, D_{t}^{i}\right)\right) \cdot \sigma_{t+1}^{i'} & \text{otherwise} \end{cases}$$

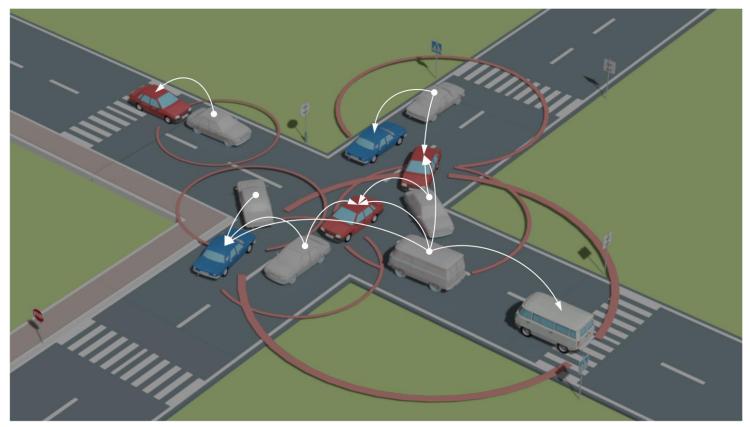


 σ_t^i is the detected score.

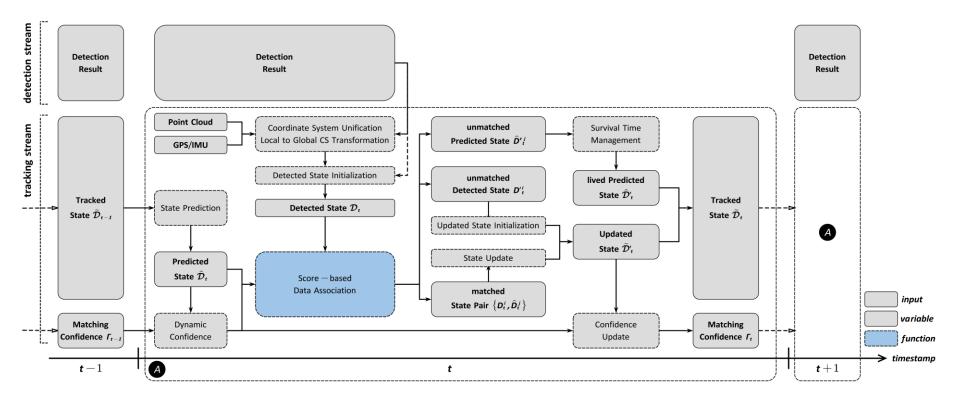
 $D_{t+1}^i = \emptyset$

Dynamic confidence

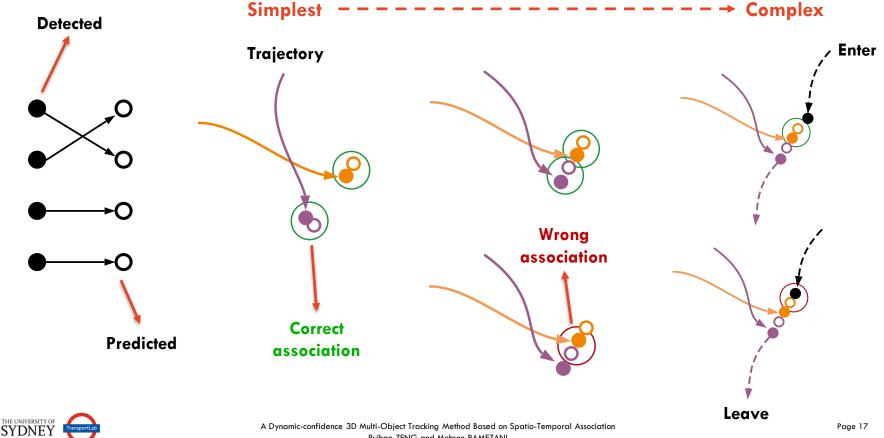




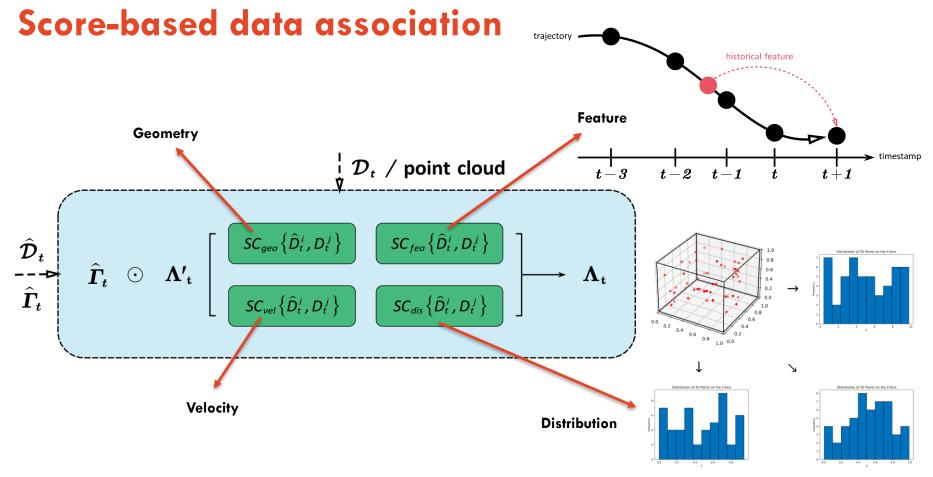
Data association



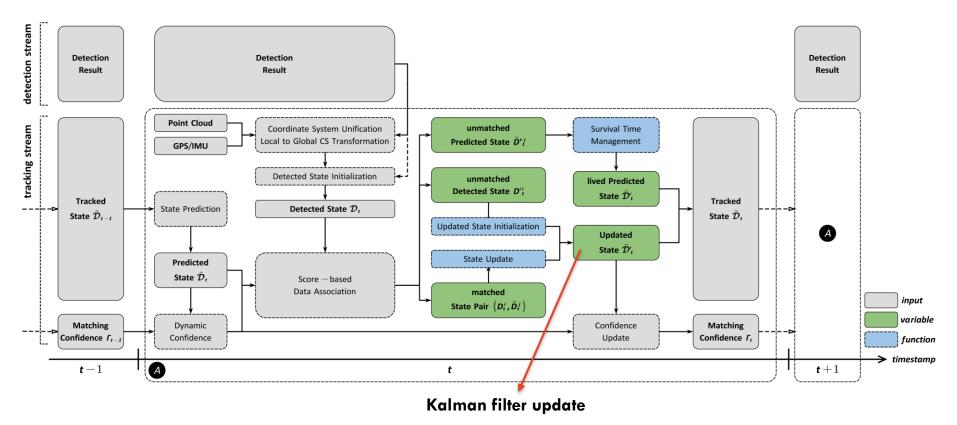
Data association



Ruihao ZENG and Mohsen RAMEZANI

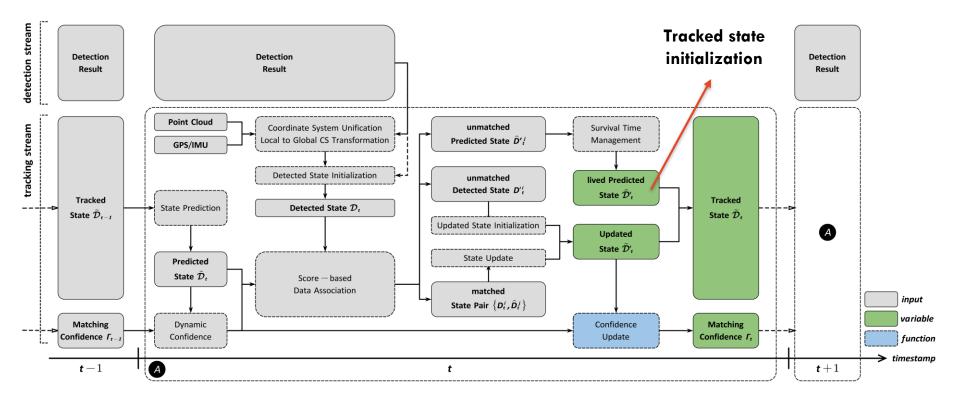


State update



A Dynamic-confidence 3D Multi-Object Tracking Method Based on Spatio-Temporal Association Ruihao ZENG and Mohsen RAMEZANI

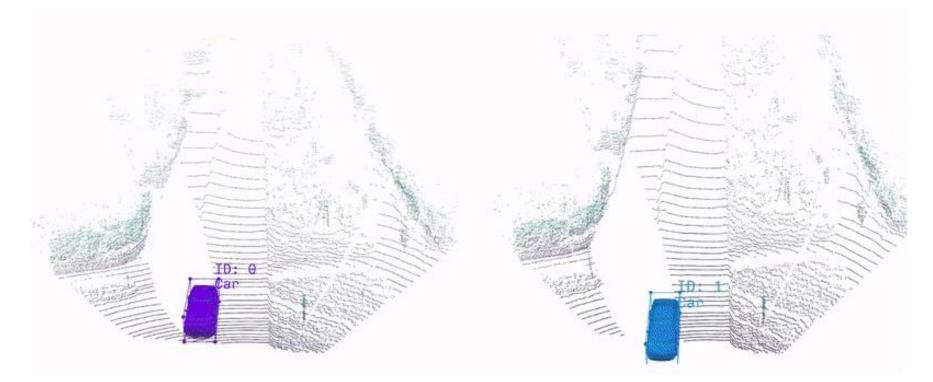
Tracked state



Performance visualization

Proposed method

FANTrack



A Dynamic-confidence 3D Multi-Object Tracking Method Based on Spatio-Temporal Association Ruihao ZENG and Mohsen RAMEZANI

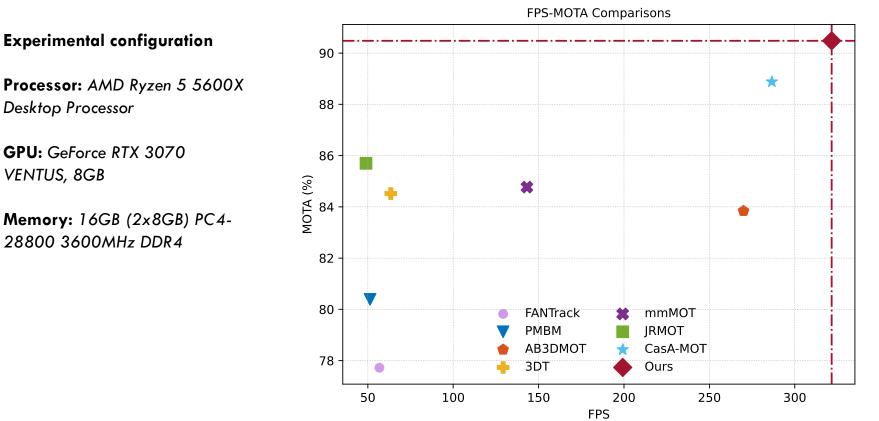
Performance comparison

Year-Method	Sensor	Туре	MOTA	MOTP	Recall	Precision	MT	ML	IDS
19-ComplexerYOLO [1]	Camera	3D	75.70%	78.46%	85.32%	95.18%	58.00%	5.08%	1186
19-FANTrack [2]	Camera/LiDAR	3D	77.72%	82.33%	83.66%	96.15%	62.62%	8.77%	150
18-PMBM [3]	Camera	3D	80.39%	82.33%	85.01%	96.93%	62.77%	6.15%	121
19-aUToTrack [4]	Camera/LiDAR	2D	82.25%	80.52%	89.36%	97.03%	56.77%	7.38%	1025
19-AB3DMOT [5]*	Lidar	3D	83.84%	85.24%	88.32%	96.98%	66.92%	11.38%	9
19-3DT [6]	Camera	3D	84.52%	85.64%	88.81%	97.95%	73.38%	2.77%	377
19-mmMOT [7]	Camera/LiDAR	2D	84.77%	85.21%	88.81%	97.93%	73.23%	2.77%	284
20-JRMOT [8]	Camera/LiDAR	3D	85.70%	85.48%	89.51%	97.81%	71.85%	4.00%	98
23-ACKF-MOT [9]*	Lidar	3D	88.73%	86.81%	-	-	85.62%	5.01%	8
22-CasA-MOT [10]*	Lidar	3D	88.88%	84.37%	92.62%	97.75%	80.00%	8.31%	208
Ours* (latest)	Lidar	3D	90.74%	89.46%	96.50%	95.37%	92.57%	3.82%	11
Ours* (testing part)	Lidar	3D	90.34%	86.17%	-	-	-	-	-

* denotes using the same detector - pvRCNN (also used as the baseline detector)

xxxx indicates the performance has not been tested in our own experimental environment

Performance comparison



A Dynamic-confidence 3D Multi-Object Tracking Method Based on Spatio-Temporal Association Ruihao ZENG and Mohsen RAMEZANI

- More efficient and accurate method compared with SOTA methods.
- More stable tracking of temporarily disappearing objects.
- CPU-based.
- Better long-term tracking capabilities (to be further verified).
- Better response to multi-category objects (to be further verified).

Benchmark references

[1] Simon, Martin, Karl Amende, Andrea Kraus, Jens Honer, Timo Samann, Hauke Kaulbersch, Stefan Milz, and Horst Michael Gross. "Complexer-yolo: Real-time 3d object detection and tracking on semantic point clouds." In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 0-0. 2019.

[2] Baser, Erkan, Venkateshwaran Balasubramanian, Prarthana Bhattacharyya, and Krzysztof Czarnecki. "Fantrack: 3d multi-object tracking with feature association network." In 2019 IEEE Intelligent Vehicles Symposium (IV), pp. 1426-1433. IEEE, 2019.

[3] Scheidegger, Samuel, Joachim Benjaminsson, Emil Rosenberg, Amrit Krishnan, and Karl Granström. "Mono-camera 3d multi-object tracking using deep learning detections and pmbm filtering." In 2018 IEEE Intelligent Vehicles Symposium (IV), pp. 433-440. IEEE, 2018.

[4] Burnett, Keenan, Sepehr Samavi, Steven Waslander, Timothy Barfoot, and Angela Schoellig. "autotrack: A lightweight object detection and tracking system for the sae autodrive challenge." In 2019 16th Conference on Computer and Robot Vision (CRV), pp. 209-216. IEEE, 2019.

[5] Weng, Xinshuo, Jianren Wang, David Held, and Kris Kitani. "3d multi-object tracking: A baseline and new evaluation metrics." In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 10359-10366. IEEE, 2020.

[6] Hu, Hou-Ning, Qi-Zhi Cai, Dequan Wang, Ji Lin, Min Sun, Philipp Krahenbuhl, Trevor Darrell, and Fisher Yu. "Joint monocular 3D vehicle detection and tracking." In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5390-5399. 2019.

[7] Zhang, Wenwei, Hui Zhou, Shuyang Sun, Zhe Wang, Jianping Shi, and Chen Change Loy. "Robust multi-modality multi-object tracking." In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2365-2374. 2019.

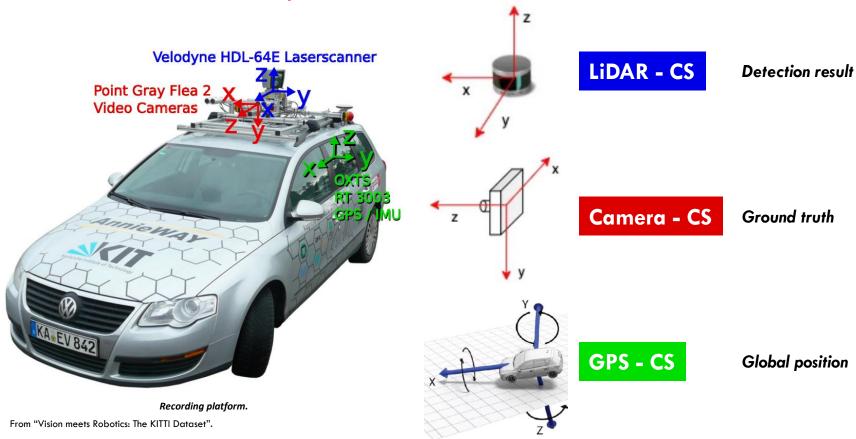
[8] Shenoi, Abhijeet, Mihir Patel, JunYoung Gwak, Patrick Goebel, Amir Sadeghian, Hamid Rezatofighi, Roberto Martin-Martin, and Silvio Savarese. "Jrmot: A real-time 3d multi-object tracker and a new large-scale dataset." In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 10335-10342. IEEE, 2020.

[9] Wu, Hai, Wenkai Han, Chenglu Wen, Xin Li, and Cheng Wang. "3d multi-object tracking in point clouds based on prediction confidence-guided data association." IEEE Transactions on Intelligent Transportation Systems 23, no. 6 (2021): 5668-5677.

[10] Guo, Ge, and Shijie Zhao. "3D multi-object tracking with adaptive cubature Kalman filter for autonomous driving." IEEE Transactions on Intelligent Vehicles (2022).

Questions?

Point cloud & GPS/IMU



Data association

$$\begin{split} \mathcal{SC}_{geo}^{ij} &:= \lambda_1 \cdot \mathcal{N}\left(\sum_{k \in \{w,h,l\}} \frac{|\hat{k} - k|}{\hat{k} + k}\right) + \lambda_2 \cdot \mathcal{N}(\|\hat{p} - p\|_2^2) + \lambda_3 \cdot \mathcal{N}(\sin|\hat{\theta} - \theta|) \\ \mathcal{SC}_{fea}^{ij} &:= \mathcal{N}\left(\exp\left(\|\hat{f} - \bar{f}\|_2^2\right)\right) \\ \left\{v_{t+1}|D_{t+1}^i\right\} = \left\{v_t|\hat{D}_t^j\right\} + \left\{\overline{\Delta v_t}|\hat{D}_t^j\right\} \\ \mathcal{SC}_{vel}^{ij} &:= \lambda_4 \cdot \mathcal{N}\left(\frac{\left|\overline{v_{t+1}^i} - \overline{v_{t+1}^j}\right|}{\overline{v_{t+1}^i} + \overline{v_{t+1}^j}}\right) + \lambda_5 \cdot \mathcal{N}\left(\sum_{m=1}^n \left(v_m - \overline{v_{t+1}^i}\right)^2 + \sum_{m=1}^n \left(v_m - \overline{v_{t+1}^j}\right)^2\right) \\ \mathcal{S}_c(A, B) &:= \cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|} = \frac{\sum_{l=1}^n A_l B_l}{\sqrt{\sum_{l=1}^n A_l^2}} \\ \mathcal{SC}_{dis}^{ij} &:= \eta_1 \cdot S_c\left(\operatorname{ProjDis}(D_x^i), \operatorname{ProjDis}(\hat{D}_x^j)\right) \\ &+ \eta_2 \cdot S_c\left(\operatorname{ProjDis}(D_y^i), \operatorname{ProjDis}(\hat{D}_y^j)\right) \\ &+ \eta_3 \cdot S_c\left(\operatorname{ProjDis}(D_z^l), \operatorname{ProjDis}(\hat{D}_y^j)\right) \end{split}$$

Confidence update

Confidence Update Confidence Γ_r

label | truncated | occlude | observation angle | 2D_bbs_Xmin | 2D_bbs_Ymin | 2D_bbs_Xmax | 2D_bbs_Ymax |3D_bbs_height | 3D_bbs_width | 3D_bbs_length | 3D_x | 3D_y | 3D_z | yaw | detection score

$$\sigma_{t+1}^{i}' = \text{sigmoid}(\sigma_{t+1}^{i}) = \frac{1}{1 + e^{-\sigma_{t+1}^{i}}}$$

Detection score

$$\gamma_{t+1}^{i} = \begin{cases} 1 & \sigma_{t}^{i'} = 0 \text{ and } \sigma_{t+1}^{i'} \neq 0 \\ \gamma_{t+1}^{i} & D_{t+1}^{i} = \emptyset \\ \hat{\gamma}_{t+1}^{i} + \left(1 - I_{O}U\left(\widetilde{D}'_{t}^{i}, D_{t}^{i}\right)\right) \cdot \sigma_{t+1}^{i'} & \text{otherwise} \end{cases}$$

Performance indexes

Based on bounding boxes

gtDet - ground truth detection prDet – predicted detection (tracked)

	Correct gtDet	Missed gtDet		
Correct prDet	ТР	-		
Extra prDet	FP	FN		
$S(IoU_{Loc}) \ge 50\%$				

$$MOTA = 1 - \frac{|FN| + |FP| + |IDSW|}{|gtDet|}$$

$$MOTP = \frac{1}{|TP|} \sum_{TP} S$$

$$Recall = \frac{TP}{TP + FN}$$

$$Precision = \frac{TP}{TP + FP}$$

$$Mostly Tracked = \frac{"tracker output"}{"GT trajectorie"} \ge 80\%$$

$$Mostly Lost = \frac{"tracker output"}{"GT trajectorie"} \le 20\%$$