Incorporation of Non-Persistent Delays in Macroscopic Network Modeling

Xiaolin Gong (Ph.D candidate)

Supervisors: Prof. Michiel Bliemer Dr. Mark Raadsen

Institute of Transport and Logistics Studies University of Sydney, School of Business

TRANSW Symposium, 09 Nov 2023

Introduction

The importance of traffic assignment models

Traffic management

Transport planning

Introduction

Dynamic network loading model

Source: https://www.esri.com/en-us/arcgis/products/arcgis-pro/resources

Introduction

Dynamic network loading model – main outcome

- Persistent delay
- Non-persistent delay

Source: https://madison.com

No delay

No delay

Non-persistent delay

- Temporary delay
- Within a cycle

Non-persistent delay

- Temporary delay
- Within a cycle

Persistent delay

- Queuing delay
- Among multiple cycles

Research purpose

Propose a novel link transmission model (LTM) that embeds non-persistent delay consistently

Link transmission model extension

- Non-persistent delay

- Embeds delays in LTM on a virtual link
- LTM requires Fundamental Diagram (FD) to determine travel time and delay
- Webster's delay is a well-known type of non-persistent delay
- Novel conversion of Webster's delay function into FD

Link transmission model extension

Link model representation with virtual link —

Input

cycle length (c)

green time (g)

	maximum speed	σ_{max}
inflow rate (q)	-	

Link transmission model extension

- Link model representation with virtual link

link L

Link transmission model extension

- Solves kinematic wave model (Lighthill-Whitham-Richards, 1956)
- Lax-Hopf formula on virtual link

cumulative inflow in earlier time period

Link transmission model extension

- Solves kinematic wave model
 (Lighthill-Whitham-Richards, 1956)
- Lax-Hopf formula on virtual link

Link model formulation

- Non-persistent delay

Example

First-in-first-out (FIFO)

FIFO condition fulfilment : The change rate of webster delay within a time unit larger than -1

Proposed method

Naïve method

Example

Travel time

Example

Travel time

Overestimated: 2 s/veh Underestimated: 6 s/veh

Contributions

Theoretical

- Incorporate non-persistent delays into the LTM, adhering to the FIFO principle.
- This is an unprecedented approach.
- Provide a macroscopic resolution, calculating average flow rates for each time instance within the entire cycle.

Contributions

Practical

- Can be embedded in LTM implemented in
 - OmniTRANS
 - AIMSUN
- For transport planners
 - an effective way to describe traffic more realistically
 - more accurate travel time and traffic flow forecast
- For decision makers
 - infrastructure investment
 - cost-benefit analysis

Sydney CBD AIMSUN model

Road construction, NSW

Thank you!

Xiaolin Gong

Institute of Transport and Logistics Studies (ITLS) University of Sydney

xiaolin.gong@sydney.edu.au

