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Overview

• Emergence of  self-driving agents

• Shared spaces

• Navigation systems and models

• Conclusion
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• Advancements in IoT leads to smart city 
development.

• Waymo taxis and Tesla cars

• Autonomous trollies and mobile lockers

• The challenge of  managing the mixed 
transportation 

Emergence of  AVs
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Shift in Urban Street Design

• Streets can be more of  a place, rather than a 
link

• The "streets for shared spaces" program in 
New South Wales in 2020

• Transform streets into shared space to make 
them more inclusive and vibrant urban areas

Old Christchurch Road (UK), Before and After implementation of the shared space 

design (ref: Evaluation and implementation of Shared Spaces report in NSW 2022).
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Location: Detroit, Michigan. 
ref: livinglabdetroit.com/portfolio/bagley-shared-street-design/

Autostradas in ports. 
Ref: industrysearch.com.au• Mixed users

• No traditional traffic demarcations

• Homogenous surface 

• Low speed limits

• Informal right of  way

• Landscaping and street furniture

• High densely populated

• Stochastic dynamic movements

Shared Environment’s Features 
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Self-driving Cars Navigation 
Methods

• Physics-based models 

• Learning-based models



PHYSICS-BASED

• Based on equations

• Requires manual adjustments

• Require less data to develop

• Computationally efficient

• Cannot capture intricated human behaviours 

• Deterministic

• Reliable outputs

• Can ensure safety

LEARNING-BASED

• Learn through interactions

• Adaptable to stochastic conditions

• Can handle uncertainty

• Require a significant amount of  data.

• Captures complex behaviors

• Computationally expensive

• Can imitate human behaviour

• Outputs could be unreliable or unrealistic 

Comparison between the Models
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Agent Features

𝜃𝐴

𝑣𝐴

𝜃∗
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𝑟

𝑑 ≤ 𝛿

𝑑: Distance to the obstacle.

𝛿: Agent sensor range.

𝑟: Minimum safe distance from obstacle. 
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𝑟+ =
𝑣𝑜
2

2 𝑏
𝑟
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𝑑: Distance to the obstacle

𝑟: Minimum safe distance from obstacle 

𝑟+: The extra length added to the axis

𝑏: The comfort braking deceleration 

𝑣𝐴: The agent velocity

𝑣𝑜: The obstacle velocity

Agent braking deceleration: −
𝑣A
2

2𝑑
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𝜃∗

𝜃𝐴

𝑣

𝑑∗

𝑑

𝑣𝑂

𝜃𝑂

State 𝑠=
Slow down

Speed up

Do nothing

0.05

0.25

0.70

0.65

0.05

0.30

An efficient learning process needs step-by-step training

Proximal Policy Optimization method

Reward= −(Euclidean distance to the goal state)+ln (distance to the nearest obstacle)
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Simulation result: Agent's navigation 
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Simulation result: Trajectory of  agents
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Combined 
approaches

Energy 
minimization

Correct the 
mistakes

Socially acceptable 
behavior

Motion prediction Real test

Future Directions
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Thank You!
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