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Emergence of AVs

Advancements in [oT leads to smart city
development.

Waymo taxis and Tesla cars

Autonomous trollies and mobile lockers

The challenge of managing the mixed
transportation
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Shift in Urban Street Design

* Streets can be more of a place, rather than a
link

* The "streets for shared spaces" program in
New South Wales in 2020

* Transform streets into shared space to make
them more inclusive and vibrant urban areas

b AN (. -
Old Christchurch Road (UK), Before and After implementation of the shared space
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Shared Environment’s Features

Autostradas in ports.
MlXed users Ref: indu@trx search.com.au
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Homogenous surface

Low speed limits

Informal right of way
Landscaping and street furniture
High densely populated

Stochastic dynamic movements

Location: Detroit, Michigan.
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> Selt-driving Cars Navigation
Methods

* Physics-based models

* Learning-based models



Comparison between the Models

PHYSICS-BASED

Based on equations

Requires manual adjustments

Require less data to develop
Computationally efficient

Cannot capture intricated human behaviours
Deterministic

Reliable outputs

Can ensure safety

Reinforcement learning model for AV navigation in shared spaces:
Sam Zareh, Michael bell, Mohsen Ramezani, Glenn Geers, Jyotirmoyee Bhattacharjya

LEARNING-BASED

Learn through interactions
Adaptable to stochastic conditions
Can handle uncertainty

Require a significant amount of data.
Captures complex behaviors
Computationally expensive

Can imitate human behaviour

Outputs could be unreliable or unrealistic




Agent Features
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How to Avoid an Obstacle?

d: Distance to the obstacle.
d: Agent sensot range.
1 Minimum safe distance from obstacle.
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Energy minimization
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Avold the Moving Obstacles

d: Distance to th | V4: The agent velocity

r: Minimum safe from obstacle Vo: The obstacle velocity

r*: The extra len d to the axis 2
Agent braking deceleration: (— ﬁ

b: The comfort brakifig deceleration
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Learning Process

Proximal Policy Optimization method

Oc—FKAO0—0
AX’X“)’ 0.65 Slow down
WQXMQ 0.85 Speed up

O

A‘\’x. 0.30 Do nothing

State S=

Reward= —(Euclidean distance to the goal state)+1n (distance to the nearest obstacle)

An efficient learning process needs step-by-step training
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on result: Agent's naviga

ndom_integers(10, area, num_objects).tolist()

ndom_integers(1 area, num_objects).tolist()

om.random_integers(18, area, num_objects).tolist()

om.random_integers(1l area, num_objects).tolist()

m.uniform( 2 % np.pi, num_objects).tolist()
ge(num_objects)]

's\azar4020\0neDrive - The University of Sydney (Staff)\PhD\Codes\PyCodes\SimpleRL\Swarm-063\mai
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lon result: Trajectory of agents

X_new, y_new - length, % (np.round(v, 1)),

ax(x_edge[1], x_edge[B] + 18))
ax(y_edge[1], y_edge[8] + 18))
{frame} ) #

(x_history)):

ngle((objects_goal_x[ind] - length, objects_goal_y[ind] - length), 2 % length
2 % length, =1, =colors[ind], = ]

t)

(decomposed_x[i]) for i in range(len(x_history))])

fig, update, =num_frames, =animation_speed)

J
)
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