Decentralized Intersection Control: Enhancing autonomous vehicle navigation and traffic efficiency

Alireza Soltani, David Levinson and Mohsen Ramezani

THE UNIVERSITY OF SYDNEY

用調用

III ISI

Introduction

- Efficient intersection management is essential for **minimizing** traffic congestion, reducing travel time, and **improving** road safety
- Traditional signalized intersections
- Central controllers

Introduction

• Deadlocks

Problem description

- Decentralized intersection control
- No central controller
- No communication

Assumptions:

- Each lane allocates to a specific movement (right, left, or straight) No lane changing
- The reaction time of vehicles is zero (minimum headway is 1.33 seconds)
- The conflict point is where two paths cross (i.e. right turns don't have conflict)
- Genuine behavior of AVs; false actions are not accounted for
- No pedestrians

Method

Speed optimum:

- Vehicles **check the front vehicle** to maintain a safe distance
- Vehicles check conflicting movements
- Using time to the collision point
- **Risk of collision**, the vehicle that requires more time to cross, **decelerate**
- This process continues at every time step
- Other than right turns, always two vehicles can cross

Speed optimum – check collision risk

Compare Times-to-Conflict Point:

interval_A = $[t_A, t_A + t_{c,A}]$ interval_B = $[t_B, t_B + t_{c,B}]$

If there is an **overlap**, a collision is possible

Decelerate to avoid collision.

Signalized

Speed optimum

TransportLab The University of Sydney

Distribution of delay times - 9000veh/hr input

Enhancing autonomous vehicle navigation and traffic efficiency Alireza Soltani, David Levinson, Mohsen Ramezani

Results

Average delay vs. Input flow

Thank you for your attention!

