Multi-tiered ridesourcing services in the e-hailing market

Guipeng Jiao Andres Fielbaum Mohsen Ramezani

TransportLab, School of Civil Engineering, University of Sydney

Background

What is the e-hailing market?

- E.g. Uber & Didi
- Point-to-point: A service that takes passengers from A to B
- Two sided: A digital platform is used to connect drivers and passengers

What are the ridesourcing services?

- One passenger (group), one driver
- On-demand: trip orders occur in real time

Objective

To improve the operational efficiency for a platform

- Lower vehicle deadheading
- Fewer passenger cancellations
- Higher platform profitability

Our idea: multi-tiered ridesourcing services

- Premium service: higher prices, shorter waiting time
- Economy service: lower prices, longer waiting time

How does multi-tiering improve overall efficiency

- People with lower VOT opt for economy service
- The platform hold them in the system for longer until a really good match

improving overall social welfare

Framework

Passenger's Perspective

Problem description

- Determining the following for each option for each passenger i:
 - Estimated matching time, \hat{t}_{m}^{i}
 - Estimated pickup time, \hat{t}_{p}^{i}
 - Price, f^i
- And how to match passengers (after selecting the options) to idle vehicles
- With the goal of:
 - Maximizing total profit and/or
 - Maximizing social welfare
- Assuming:
 - Platform knows population mean characteristics of passengers
 - Fixed fleet size, and vehicles comply with the platform's directions

Passenger Choice Modelling

Premium vs Economy vs Other modes

• The utilities of the options for passenger i:

$$U_{\text{prem}}^{i} = A_{\text{ridesourcing}}(\text{trip length}^{i}) - \text{VOT}^{i} \times (\hat{t}_{\text{m,prem}}^{i} + \hat{t}_{\text{p,prem}}^{i}) - f_{\text{prem}}^{i}$$
$$U_{\text{eco}}^{i} = A_{\text{ridesourcing}}(\text{trip length}^{i}) - \text{VOT}^{i} \times (\hat{t}_{\text{m,eco}}^{i} + \hat{t}_{\text{p,eco}}^{i}) - f_{\text{eco}}^{i}$$
$$U_{\text{public}}^{i} = A_{\text{public}}(\text{trip length}^{i}) - \text{VOT}^{i} \times (\text{additional travel time}^{i}) - f_{\text{public}}^{i}$$

• The probabilities of choosing each option:

$$P(\text{premium}) = \frac{e^{\beta U_{\text{prem}}^{i}}}{e^{\beta U_{\text{prem}}^{i}} + e^{\beta U_{\text{eco}}^{i}} + e^{\beta U_{\text{public}}^{i}}}$$

Multi-tiered ridesourcing services in the e-hailing market Guipeng Jiao, Andres Fielbaum, Mohsen Ramezani

8

Passenger Choice Modelling

Matching impatience & Service quality sensitivity

• Passenger cancels during matching if matching patience exceeded:

Matching threshold^{*i*} = $\hat{t}_{m}^{i} + \$0.5/VOT^{i}$

• Passenger cancels after being matched if the pickup time too long:

Pickup threshold^{*i*} = $\hat{t}_{p}^{i} + \$2/VOT^{i}$

Note: VOT for each passenger is drawn from truncated normal distributions with mean of \$24/hour, and \$12/hour and \$36/hour bounds

Platform Operation: Price and Wage

• Price of trips

 $f_{\text{prem}}^{i} = \alpha_{1,\text{prem}} + \alpha_{2,\text{prem}} \times \text{trip length}^{i}$ $f_{\text{eco}}^{i} = \alpha_{1,\text{eco}} + \alpha_{2,\text{eco}} \times \text{trip length}^{i}$

• Wages

Salary = $\alpha_3 \times \text{price}$ $\alpha_3 = 80\%$

Platform Operation: 3 Stages

- Stage 1: Estimating matching time and pickup times for the options
 - Help passengers make an informed decisions based on accurate estimates
 - May need to be forward looking
 - The values are not misrepresented to skew passenger choice
- Stage 2: Pricing the options
 - Dynamically price the options
 - Aim to maximize profit by skewing passenger choices and improving efficiency
- Stage 3: Matching algorithm
 - An efficient algorithm with known passenger choices

Matching algorithm

Dynamic Search radius

Preliminary experiments

	Economy	Premium
Matching time	300 s	60 s
Pickup time	120 s	210 s
α1	Variable	Variable
α2	\$0.6 per min	\$0.6 per min

- Total of 3000 vehicles (4 new vehicles per second for the first 750 seconds generated at random locations)
- Passengers appears within the system according to real world demand (3/2/2015 Monday)
- 2-hour simulations, with 1 hour warmup (18864 potential demand in the final 1 hour)

Test cases

Service offered	Price parameter (\$)
Only Premium	$\alpha_{1,prem} = 0.5:0.5:5$
Only Economy	$\alpha_{1,eco} = 0.5:0.5:5$
Both	$\alpha_{1,prem} = 0.5:0.5:5$ $\alpha_{1,eco} = 0:0.5:\alpha_{1,prem}$

Total Profit

Average Pickup Times (deadheading)

Total Cancellations

Multi-tiered ridesourcing services in the e-hailing market Guipeng Jiao, Andres Fielbaum, Mohsen Ramezani

Thank You