Achieving greater circularity in the construction and demolition industry: A Greater Sydney case study

Ze Wang – PhD Student Professor Michael Bell – Primary Supervisor Dr Jyoti Bhattacharjya – Second Supervisor

Institute of Transport and Logistics Studies (ITLS) University of Sydney Business School

Achieving greater circularity in the construction and demolition industry: A Greater Sydney case study

- 1. Introduction
- 2. Literature review & Research gaps
- 4. Methodology
- 5. Model formulation
- 6. Scenario result & Discussion
- 7. On going research

Introduction

Circular Economy

An economic system that aims to keep resources in use for as long as possible (Hofmann, 2019).

The current:

Only around 9% of all the materials consumed were recycled in 2022 (Neuhold, 2022).

- Designing out waste and pollution (Bao, 2023).
- Regenerating natural systems ((Bianchi & Cordella, 2023).

Circular Construction

• Applies the principles of the circular economy to create a closed-loop system for construction industry (Ghaffar et al., 2020).

Introduction

Recovery in NSW

- Resource recovery rate: 67.1%.
- Recycling rate: 64.7%.
- Recovery rate for C&D waste: 79.6%.
- C&D generates the most non-recycled waste: 1.7m tonnes/y.

(Australian Government Department of Climate Change Energy the Environment and Water, 2022)

Concrete consumption:

• 29 million cubic meters per year (Cement Concrete & Aggregates Australia, 2023).

Mostly used type

- Regular strength concrete.
- 20 MPa(megapascal) to 40 MPa (typically around 25 MPa).
- Building foundations, slabs, and walls. (Mohammadi and South, 2017)

Literature review & Research gaps

Current research

- Recycled concrete applications (Economic and environmental benefits)
- Importance of Transportation management

Research gap

 Lack of studies examining the relationship between recycling cost, landfill cost, logistics cost, recycling and landfill rate. (a)

What are the biggest setbacks towards the recycling/reuse of C&DW?

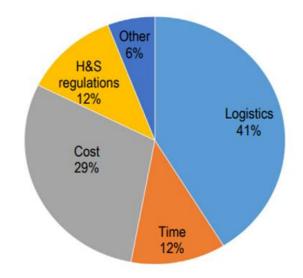


Fig 1 Bottleneck in efficient recycling and reuse in UK as revealed from questionnaire

(Ghaffar, Burman and Braimah, 2020)

Methodology

System Dynamics

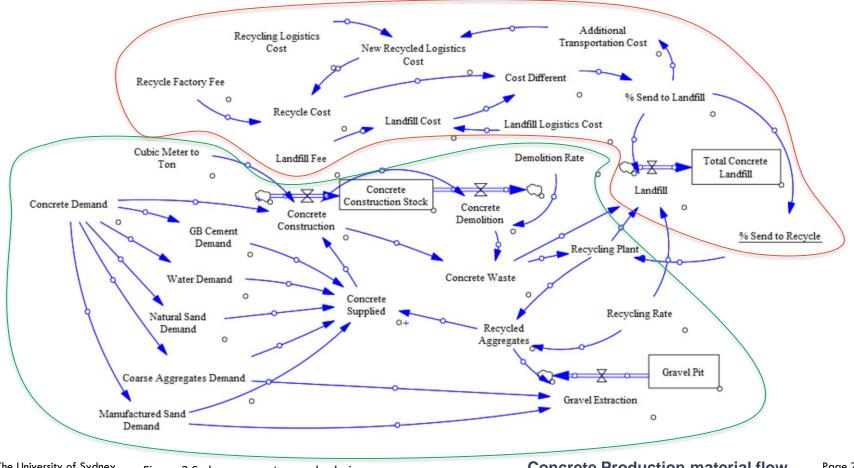
- Analyses complex systems and their change over time (Jones, 2014).
- Uncover system properties and identify crucial variables (Karnopp, 2012).
- Good for social, economic, ecological, and engineering systems that involve feedback loops, delays, and nonlinear relationships

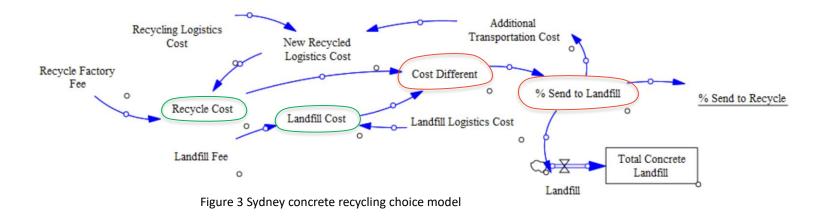
To build a SD model

- Define System Boundaries
- Identify Key Components and Feedback Loops
- Create Computer-based Model using Vensim
- Run Simulations
- Analyze Results

Objective

• Understand the relationship between recycling cost, landfill cost, and logistics cost


Focus


Construction industry in Sydney

Data Sources

- Academic literature
- Industry reports
- Expert from industry

Concrete recycling choice model

Additional transportation cost

- Rise in landfill fee prompts shift to recycling.
- Companies switch from previous short landfill routes to longer recycling routes.
- Recycling becomes financially prudent despite higher transport costs.

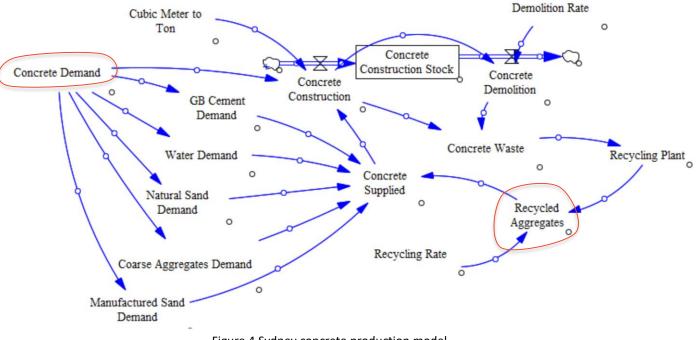


Figure 4 Sydney concrete production model

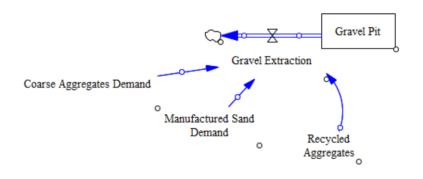


Figure 5 Gravel pit extraction

Variables←	Type↩┘	Unit↩	Equations↩				
Concrete Demand ←	Data↩	m³↩ᄀ	<i> </i> ₽				
GB Cement Demand←	Auxiliary↩	Ton∈⊐	(240*Concrete Demand)/1000↩				
Water Demand←	Auxiliary	Ton↩	(165*Concrete Demand)/1000리				
Natural Sand Demand←	Auxiliary	Ton↩	(Concrete Demand*380)/1000↩				
Coarse Aggregates Demand↩	Auxiliary↩	Ton↩	(1000*Concrete Demand)/1000년				
Manufactured Sand Demand←	Auxiliary↩	Ton↩	(450*Concrete Demand)/1000년				
Concrete Supplied←	Auxiliary↩	m³⇔	GB Cement Demand/240+Water Demand/165+Natural Sand Demand/380+(Coarse Aggregates Demand-Recycled Aggregates/ <u>1000</u>)+Recycled Aggregates/1000+Manufactured Sand Demand/450더				
Concrete Construction ← 7	Auxiliary↩	Ton↩	(MIN(Concrete Demand, Concrete Supplied))*Cubic Meter to Ton				
Cubic Meter to Ton∈	Constant↩	¢	2.235↩				
Concrete Construction Stock←	Level↩	Ton↩	Concrete Construction-Concrete Demolition 리				
Concrete Demolition←	Auxiliary↩	Ton↩	Concrete Construction*Demolition Rate [□]				
Demolition Rate< [□]	Auxiliary↩	ç	0.457666*0.5↩				
Concrete Waste⇔	Auxiliary↩	Ton↩	Concrete Demolition+1e-07*Concrete Construction ←				
Recycling Plant←	Auxiliary↩	Ton↩	"% Send to Recycle"*Concrete Waste⊖				
Recycled Aggregates↩	Auxiliary↩	Ton↩	Recycling Plant*Recycling Rate←				
Recycling Rate⇔	Constant↩	Ċ	0.9↩				
Gravel Extraction←	Auxiliary↩	Ton↩	Manufactured Sand <u>Demand+Coarse</u> Aggregates Demand-Recycled Aggregates				
Gravel Pit←	Level←	Ton↩	-Gravel Extraction				
Recycle Factory Fee⊖	Constant↩	\$↩	80↩				
Recycling Logistics Cost↩	Constant↩	\$↩	445↩				
Recycle Cost←	Auxiliary↩	\$↩ᄀ	New Recycled Logistics Cost+Recycle Factory Fee↩				
New Recycled Logistics Cost↩	Auxiliary↩	\$↩ᄀ	Recycling Logistics Cost+Additional Transportation Cost←				
Additional Transportation Cost	Auxiliary↩	\$↩ᄀ	(1-"% Send to Landfill <u>")</u> *30년				
Landfill Fee	Constant↩	\$↩ᄀ	147~				
Landfill Cost←	Auxiliary↩	\$↩コ	Landfill Fee+Landfill Logistics Cost은				
Landfill Logistics Cost< [□]	Constant↩	\$↩	450년				
Cost Different [←]	Auxiliary	\$↩	Recycle Cost-Landfill Cost↩				
% Send to Landfill↩	Auxiliary	¢	1/(1+ exp(-(1.5869 - (-0.0829612) * Cost Different)))↩				
% Send to Recycle⇔	Auxiliary↩	÷	1-"% Send to Landfill"				
Landfill↩	Auxiliary	Ą	Concrete Waste*"% Send to Landfill"+(1-Recycling <u>Rate)*</u> Recycling Plant⇔				
Total Concrete Landfill←	Level↩	ę	Landfille				

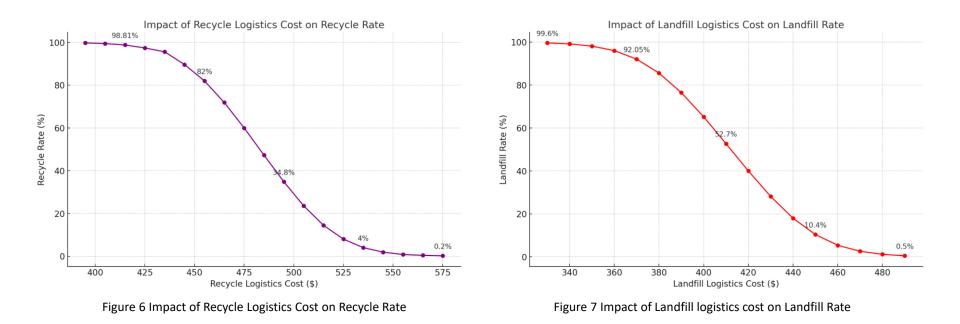

The University of Sydney

Table 1 Equations in SD model.

Scenario Result & Discussion

Time	/↩	/<□	/<-	/↩	At month 120€	At month 120	At month 120€	At month 120€ €
Unit←	\$≪ੋ	\$<⊐	/←	/<⊐	Million ton⇔	/<□	Million ton	/↩
Scenarios <	Recycling logistic cost⊖	Landfill logistic cost⇔	Sent to recycle은	Sent to landfill↩	Total landfill↩	Total landfill / base⇔	Total gravel extraction	Total gravel extraction / base ${\scriptscriptstyle \sub}$ ${\stackrel{\scriptstyle \leftarrow}{\leftarrow}}$
Landfill logistic cost increase 10%	445↩	495<⊐	99.60%←	0.40%↩	4.09←	53%←ੋ	76.74↩	95.54%←ੋ
Recycling logistic cost increase 10% ${}^{{}_{\!$	489.5⇔	450↩	41.58%←	58.42%↩	24.78↩	323%↩	97.44	121.31%
Landfill logistic cost decrease 25%	445←	337.5↩	0.70%↩	99.30%↩	39.35↩	514%←	112←	139.44%↔
Recycling logistic cost decrease 25%⇔	333.75↩	450↩	100.00%<□	0.00%	4.09<□	53%↩	76.62↩	95.39%↩ -
Both cost decrease 50%	222.5⇔	225↩	87.97%	12.03%	8.25	108%	80.91⊲	100.73%
Both cost increase 100%	890⊖	900€∃	92.42%	7.58%↩	6.66←	87%⊱ੋ	79.32↩	98.75%↩
Base←	445<⊐	450↩	89.64%<	10.36%⇔	7.66←	100%←	80.32←	100.00%< ←

Scenario Result & Discussion

Scenario result & Discussion

Dynamic relationship Identification

 Uncovered a nonlinear dynamic relationship between recycling cost, landfill cost, recycling rate, and landfill rate.

Importance of Recycling and Landfill Cost Ratio:

- Highlighted the need to maintain a specific cost ratio between recycling and landfill.
- Can inform economic incentives or regulations to encourage recycling.
- Find optimal cost ratios and predictive analytics in recycling.

Covering Poor Recycling Supply Chain Efficiency:

• Identified that good cost ratio management can offset poor logistic supply chain efficiency.

Logistics Cost Significance:

- Emphasized the important role of logistics costs in recycling.
- Recycling caused by higher landfill fee will increase the total recycling transportation cost, because companies were forced to choose the cheaper but longer route.
- May lead to efforts to reduce these costs through optimization and technological investments.

On going research

- Location selection
- Traffic prediction
- Stake holder analysis

Reference

Australian Goverment Department of Climate Change Energy the Environment and Water.
(2022). Waste and Resource Recovery Data Hub - National waste data viewer - DCCEEW. Waste and Resource Recovery Data Hub.

https://www.dcceew.gov.au/environment/protection/waste/how-we-managewaste/data-hub/data-viewer

- Bao, Z. (2023). Developing circularity of construction waste for a sustainable built environment in emerging economies: <u>New</u> insights from China. *Developments in the Built Environment, 13*(December 2022), 100107. https://doi.org/10.1016/j.dibe.2022.100107.
- Bianchi, M., & Cordella, M. (2023). Does circular economy mitigate the extraction of natural resources? Empirical evidence based on analysis of 28 European economies over the past decade. *Ecological Economics*, *203*(May 2022), 107607. https://doi.org/10.1016/j.ecolecon.2022.107607↔
- Cement Concrete & Aggregates Australia. (2023). Concrete Overview. https://www.ccaa.com.au/IMIS_Prod/CCAA/Industry/Concrete/CCAA/Public_Content/I NDUSTRY/Concrete/Concrete_Overview.Aspx?Hkey=50e46381-71a1-4a42-A89f-D073f063ed51^{{--}}</sup>
- Ghaffar, S. H., Burman, M., & Braimah, N. (2020). Pathways to circular construction: An
integrated management of construction and demolition waste for resource recovery.JournalofCleanerProduction,244,118710.https://doi.org/10.1016/j.jclepro.2019.118710↩
- Hofmann, F. (2019). Circular business models: Business approach as driver or obstructer of sustainability transitions? *Journal of Cleaner Production*, *224*, 361–374. https://doi.org/10.1016/j.jclepro.2019.03.115€¹

Reference

- Jones, L. (2014). <u>Vensim</u> and the development of system dynamics. In *Discrete-Event Simulation and System Dynamics for Management Decision Making* (Vol. 9781118349, pp. 215–247). Wiley Blackwell. https://doi.org/10.1002/9781118762745.ch11⁽⁴⁾
- Karnopp, Dean. (2012). System <u>dynamics</u>: modeling, simulation, and control of mechatronic systems. In *Wiley*.^{L1}
- Mohammadi, J., & South, W. (2017). Life cycle assessment (LCA) of benchmark concrete products in Australia. *International Journal of Life Cycle Assessment, 22*(10), 1588–1608. https://doi.org/10.1007/s11367-017-1266-2←
- Neuhold, M. (2022). Why the circular economy is transforming traditional logistics. EY. https://www.ey.com/en_us/consulting/circular-economy-viable-opportunities-for-logistics