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Introduction

The University of Sydney

Circular Economy

An economic system that aims to keep
resources in use for as long as
possible (Hofmann, 2019).

v

The current:

Only around 9% of all the materials consumed
were recycled in 2022 (Neuhold, 2022).

. Designing out waste and pollution (Bao,
2023).

. Regenerating natural systems ((Bianchi &
Cordella, 2023).

Circular Construction

. Applies the principles of the circular
economy to create a closed-loop system for
construction industry (Ghaffar et al., 2020).
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Introduction

The University of Sydney

Recovery in NSW

. Resource recovery rate: 67.1%.

. Recycling rate: 64.7%.

. Recovery rate for C&D waste: 79.6%.

. C&D generates the most non-recycled
waste: 1.7m tonnesly.

(Australian Government Department of Climate
Change Energy the Environment and Water,
2022)

Concrete consumption:

. 29 million cubic meters per year (Cement
Concrete & Aggregates Australia, 2023).

Mostly used type
. Regular strength concrete.

. 20 MPa(megapascal) to 40 MPa (typically
around 25 MPa).

. Building foundations, slabs, and walls.
(Mohammadi and South, 2017)
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Literature review & Research gaps

Current research

. Recycled concrete applications (Economic and
environmental benefits)

«  Importance of Transportation management

Research gap

. Lack of studies examining the relationship
between recycling cost, landfill cost, logistics
cost, recycling and landfill rate.

The University of Sydney

( a) What are the biggest setbacks towards
the recycling/reuse of C&DW?

Fig 1 Bottleneck in efficient recycling and re-
use in UK as revealed from questionnaire

(Ghaffar, Burman and Braimah, 2020)
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Methodology

System Dynamics

. Analyses complex systems and their change over
time (Jones, 2014).

. Uncover system properties and identify crucial
variables (Karnopp, 2012).

. Good for social, economic, ecological, and
engineering systems that involve feedback loops,
delays, and nonlinear relationships

To build a SD model

. Define System Boundaries

. Identify Key Components and Feedback Loops
. Create Computer-based Model using Vensim

. Run Simulations

. Analyze Results

The University of Sydney

Objective

. Understand the relationship between recycling cost,
landfill cost, and logistics cost

Focus
. Construction industry in Sydney

Data Sources

. Academic literature
. Industry reports

. Expert from industry
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Model formulation Concrete recycling choice model
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Model formulation
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Figure 3 Sydney concrete recycling choice model

Additional transportation cost

. Rise in landfill fee prompts shift to recycling.

. Companies switch from previous short landfill routes to longer recycling routes.
. Recycling becomes financially prudent despite higher transport costs.
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Model formulation

Cubic Meter to Demolition Rate
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Figure 4 Sydney concrete production model

The University of Sydney
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Model formulation
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Figure 5 Gravel pit extraction
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Model formulation

The University of Sydney

Variables<” Type<’ Unit<’| Equations<’

Concrete Demand<’ Data<’ m3< | [

GB Cement Demand<’ Auxiliary<’| Ton< | (240*Concrete Demand)/1000<’

Water Demand<’ Auxiliary<'| Ton<’ | {165*Concrete Demand)/1000+

Natural Sand Demand<’ Auxiliary<’| Ton< | (Concrete Demand*380)/1000<

Coarse Aggregates Demand<’ Auxiliary<?| Ton<” | (1000*Concrete Demand)/1000<

Manufactured Sand Demand-« Auxiliary<’| Ton< | (450*Concrete Demand)/1000<’

Concrete Supplied< Auxiliary'| m3~ | GB Cement Demand/240+Water Demand/165+Natural Sand Demand/380+(Coarse
Aggregates Demand-Recycled Aggregates/1000)+Recycled Aggregates/1000+Manufactured
Sand Demand/450<

Concrete Constructions’ Auxiliary<'| Ton<’ | (MIN{Concrete Demand, Concrete Supplied ))*Cubic Meter to Ton<’

Cubic Meter to Ton< Constant<?!| < 2.235¢

Concrete Construction Stock<’ Level< Ton<' | Concrete Construction-Concrete Demolition<

Concrete Demolition<’ Auxiliary<?| Ton<” | Concrete Construction*Demolition Rate<’

Demolition Rate<’ Auxiliary<’| < 0.457666*0.5¢

Concrete Waste<’ Auxiliary<’| Ton<' | Concrete Demolition+1e-07*Concrete Construction<’

Recycling Plant<! Auxiliary<’| Ton<' | "% Send to Recycle"*Concrete Waste<

Recycled Aggregates<’ Auxiliary<’| Ton< | Recycling Plant*Recycling Rate<

Recycling Rate<” Constant<’| < 0.9<

Gravel Extraction’ Auxiliary<’| Ton<’ | Manufactured Sand Demand+Coarse Aggregates Demand-Recycled Aggregates<”

Gravel Pit< Level< Ton<’ | -Gravel Extraction<

Recycle Factory Fee<! Constant| ¢ 80«

Recycling Logistics Cost<” Constant<?| §¢ 445+

Recycle Cost< Auxiliary<'| §< New Recycled Logistics Cost+Recycle Factory Fee<’

New Recycled Logistics Cost< Auxiliary<'| < Recycling Logistics Cost+Additional Transportation Cost+’

Additional Transportation Cost<” | Auxiliary<’| $< (1-"% Send to Landfill")*30<

Landfill Fee< Constant<’| §¢ 1474

Landfill Cost<’ Auxiliary<’| $¢ Landfill Fee+Landfill Logistics Cost<’

Landfill Logistics Cost<’ Constant| §¢ 450+

Cost Different<” Auxiliary<’| §¢ Recycle Cost-Landfill Cost<”

% Send to Landfill< Auxiliary<?| < 1/(1+ exp(-(1.5869 - (-0.0829612) * Cost Different)))<’

% Send to Recycle< Auxiliary<’| < 1-"% Send to Landfill"<

Landfill<! Auxiliary<’| < Concrete Waste*"% Send to Landfill"+{1-Recycling Rate)*Recycling Plant:’

Total Concrete Landfill< Level< < Landfill<

Table 1 Equations in SD model.
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Scenario Result & Discussion

Times«
Unit<’
Scenarios¢
Landfill logistic cost increase 10%<
Recycling logistic cost increase 10%:
Landfill logistic cost decrease 25%:
Recycling logistic cost decrease 25%¢
Both cost decrease 50%:

Both cost increase 100%:

Bases

The University of Sydney

J<
§¢
Recycling logistic cost«
445¢
489.5¢
445¢
333.75¢
222.5¢
890¢
445¢

/<
§¢

Landfill logistic cost:

495¢
450
337.5¢
450«
225¢
900+
450

/<
/(

Sent to recycle«

99.60%:
41.58%:

0.70%:

100.00%:¢

87.97%:
92.42%:
89.64%:

/
/e

Sent to
landfill<

0.40%+<

58.42%:
99.30%:¢
0.00%:
12.03%:¢
7.58%:
10.36%:

At month
120¢

Million ton<’
Total landfill

4.09¢
24.78¢
39.35¢
4.09¢
8.25¢7
6.66¢
7.66¢

At month 120¢

/(

Total landfill / base«

53%:
323%<
514%<

53%:¢
108%<

87%:¢
100%:

At month 120¢
Million ton¢
Total gravel extraction¢

76.74¢
97.44¢
112¢
76.62¢
80.91«
79.32¢
80.32¢

At month 120<
I&
Total gravel extraction [ base<
95.54%:¢
121.31%¢"
139.44%¢
95.39%:
100.73%:

98.75%
100.00%:
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Scenario Result & Discussion

Impact of Recycle Logistics Cost on Recycle Rate Impact of Landfill Logistics Cost on Landfill Rate
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Figure 6 Impact of Recycle Logistics Cost on Recycle Rate Figure 7 Impact of Landfill logistics cost on Landfill Rate
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Scenario result & Discussion

Dynamic relationship Identification

. Uncovered a nonlinear dynamic relationship between recycling cost, landfill cost, recycling rate, and
landfill rate.

Importance of Recycling and Landfill Cost Ratio:

. Highlighted the need to maintain a specific cost ratio between recycling and landfill.
. Can inform economic incentives or regulations to encourage recycling.

. Find optimal cost ratios and predictive analytics in recycling.

Covering Poor Recycling Supply Chain Efficiency:
. Identified that good cost ratio management can offset poor logistic supply chain efficiency.

Logistics Cost Significance:
. Emphasized the important role of logistics costs in recycling.

. Recycling caused by higher landfill fee will increase the total recycling transportation cost, because
companies were forced to choose the cheaper but longer route.

. May lead to efforts to reduce these costs through optimization and technological investments.
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On going research
— Location selection
— Traffic prediction

— Stake holder analysis
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