Motivation

The Mode

Numerical Experiments

Conclusion and Future Work

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨヨ ろのぺ

1/14

Nov 2023

A Price Determination for Balancing the Charging Demand of Electric Vehicle

Qi Wang¹

Supervisors by: A/Prof. Dongmo Zhang¹, Dr.Bo Du², Prof.Yan Zhang¹ Western Sydney University¹ University of Wollongong²

TRANSW

Jumerical Experiments

Conclusion and Future Work

Table of Contents

🕗 The Model

- 8 Numerical Experiments
- 4 Conclusion and Future Work

Numerical Experiments

Conclusion and Future Work

Motivation

Map of charging stations in Sydney

TRANSW

Nov 2023

<ロ> < 個> < 注> < 注> < 注) < 注</p>

Motivation

Assume each EV chooses charging stations to charge based on:

- * Travel cost
- * Charging cost
- * Waiting time (cost)
- If we let each EV made decision, we would have long queues at some charging stations as you will see in our simulation.
- Our research is to find how to balance charging queues by varying charging price at different charging stations.

The Model

Stackelberg Game - multi leaders & multi followers

Consider the finite strategic form game

$$\Gamma = \{ \boldsymbol{N}, \{ \boldsymbol{S}_{\boldsymbol{p}} \}_{\boldsymbol{p} \in \boldsymbol{N}}, \{ u_{\boldsymbol{p}}(\boldsymbol{s}) \}_{\boldsymbol{p} \in \boldsymbol{N}} \},$$
(1)

where

- **N** = {1,2,...,*n*} is a set of players. *n* is the number of players;
- *S_p* = {1,2,..., m_p} is a set of strategies of the player *p* ∈ *N*; m_p is a number of strategies of the player *p*, where m_p < +∞, *p* ∈ *N*; Let *S* = ×_{*p*∈*N*}*S_p* which is called a profile set;
- For each $\boldsymbol{s} = (s_1, s_2, ..., s_n) \in \boldsymbol{S}$, $u_p(\boldsymbol{s})$ is a utility (payoff, cost) function of the player $p \in \boldsymbol{N}$.
- When the player *p* ∈ *N* moves, the players 1, 2, ..., *p* − 1 are leaders of the player *p* and the players *p* + 1, ..., *n* are followers of the player *p*.

TRANSW

Nov 2023

Numerical Experiments

Conclusion and Future Work

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□>

6/14

Nov 2023

The Model Stackelberg Game - multi leaders & multi followers

The correspondent mixed-strategy game of Γ is

$$\hat{\Gamma} = \{ \boldsymbol{N}, \{ \boldsymbol{X}_{\boldsymbol{p}} \}_{\boldsymbol{p} \in \boldsymbol{N}}, \{ f_{\boldsymbol{p}}(\boldsymbol{x}) \}_{\boldsymbol{p} \in \boldsymbol{N}} \},$$
(2)

where

•
$$\boldsymbol{X}_{p} = \{ \boldsymbol{x}^{p} \in \mathbb{R}_{\geq}^{m_{p}} : \boldsymbol{x}_{1}^{p} + \boldsymbol{x}_{2}^{p} + \dots + \boldsymbol{x}_{m_{p}}^{p} = 1 \}$$
 is a set of mixed strategies of the player $p \in \boldsymbol{N}$. Let $\boldsymbol{X} = \times_{p \in \boldsymbol{N}} \boldsymbol{X}_{p}$;
• $f_{p}(\boldsymbol{x}) = \sum_{s_{1}=1}^{m_{1}} \sum_{s_{2}=1}^{m_{2}} \cdots \sum_{s_{n}=1}^{m_{n}} u_{p}(\boldsymbol{s}_{1}, \boldsymbol{s}_{2}, \dots, \boldsymbol{s}_{n}) \prod_{p=1}^{n} \boldsymbol{x}_{s_{p}}^{p}$

The utility function $f_p(\mathbf{x})$ for player p in a mixed strategy game.

т	D/	(NI	CI	1/
		VI N	2	v v

The Model Stackelberg Game - multi leaders & multi followers

In a hierarchical Stackelberg game it is supposed the players make their moves sequentially:

- Step 1 the first player chooses his strategy $\mathbf{x}^1 \in X_1$ and informs the second player about his choice;
- Step 2 the second player chooses his strategy $\mathbf{x}^2 \in X_2$ and informs the third player about the choices $\mathbf{x}^1, \mathbf{x}^2$, and so on;

Step n at last, the *n*th player selects his strategy $\mathbf{x}^n \in X_n$ after knowing the choices $\mathbf{x}^1, \dots, \mathbf{x}^{n-1}$, of the preceding players.

On the resulting profile $\mathbf{x} = (\mathbf{x}^1, \dots, \mathbf{x}^n) \in X$, every player computes his payoff as the value of his utility function $f_p(\mathbf{x}), p = 1, \dots, n$.

...

Nov 2023

Stackelberg Game

At Step *n*, the best response of player *n* is:

$$Br_n(\boldsymbol{x}^1,\cdots,\boldsymbol{x}^{n-1}) = \arg\max_{\boldsymbol{y}^n \in \boldsymbol{X}_n} f_n(\boldsymbol{x}^1,\cdots,\boldsymbol{x}^{n-1},\boldsymbol{y}^n)$$
(3)

By backward induction, the best response of player p ($p = n - 1, n - 2, \dots, 2$) is:

$$Br_{\rho}(\boldsymbol{x}^{1},\cdots,\boldsymbol{x}^{p-1}) = \arg \max_{\substack{\boldsymbol{y}^{\rho},\cdots,\boldsymbol{y}^{n}\\ (\boldsymbol{x}^{1},\cdots,\boldsymbol{x}^{p-1},\boldsymbol{y}^{\rho},\cdots,\boldsymbol{y}^{n}) \in Gr_{p+1}}} f_{\rho}(\boldsymbol{x}^{1},\cdots,\boldsymbol{x}^{p-1},\boldsymbol{y}^{p},\cdots,\boldsymbol{y}^{n})$$
(4)

Finally, we can get the best strategies of the first player are:

$$\hat{\boldsymbol{S}} = \operatorname*{arg\,max}_{(\boldsymbol{y}^1,\cdots,\boldsymbol{y}^n)\in Gr_2} f_1(\boldsymbol{y}^1,\cdots,\boldsymbol{y}^n), \tag{5}$$

Nov 2023

8/14

TRANSW

Numerical Experiments

Conclusion and Future Work

Numerical Experiments

Road network of Sydney metropolita

TRANSW

Nov 2023

Numerical Experiments

Conclusion and Future Work

Numerical Experiments

Data Setting

• EVs: (Capacity Range: 150-300km; Remaining Range: 10-30km)

Vehicle Id	Origin	Destination	Capacity Range(km)	Remaining Range(k	m)
0	Liverpool	Manly	275	11	
1	Burwood	Bondi Juction	285	29	
2	Castle Hill	Mascot	233	26	
:	÷	:	:		
498	Kellyville	Central	187	28	
499	Parramatta	St Marys	207	19	
		EVs spe	cifications		
			4	다 문화 문화 문화 문화 관람 영)
TR	ANSW		WSU	Nov 2023 10	0/14

Numerical Experiments

Conclusion and Future Work

Numerical Experiments

Data Setting

• Locations:

Location Index	Location name	Chargers	Charging price		
0	Penrith	3	\$0.1/kWh		
1	St Marys	0	N/A		
2	Box Hill	5	free of charge		
:	÷	÷			
19	Leppington	0	N/A		
20 Campbelltown		7	\$0.55/kWh		
Locations specifications					

・ロト・白ト・モト・モト 単言 うへの

Nov 2023

Numerical Experiments

Numerical Experiments Results for EVs

Vehicle Id	Origin	Destination	Charging station
0	Liverpool	Manly	Liverpool
1	Burwood	Bondi Juction	
2	Castle Hill	Mascot	Box Hill (Blacktown)
	:	:	:
498	Kellyville	Central	Box Hill (Olympic Park)
499	Parramatta	St Marys	Blacktown

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p> Nov 2023

Numerical Experiments

Conclusion and Future Work

Numerical Experiments Results for Locations

The overall average waiting time: Before balancing is 4 hours VS after balancing is 2.1 hours.

Index	Location name	Charging station	Charging price	Waiting Time	Queuing Length
			\$8.1/kWh		
	St Marys				
			free of charge		
	Castle Hill				
			\$0.25/kWh		
	Parramatta		\$8.25/kWh		
	Olympic Park		\$8.4/kWh		
	Burwood		\$8.46/kWh		
			\$8.45/kWh		
	Bondi Juction		\$8.75/kWh		
			free of charge		
			\$8.55/kWh		
	Macquarie Pk		\$8.33/kWh		
			\$8.3/kWh		
			\$8.55/kWh		
	Liverpool		\$8.3/kWh		
	Leppington				
	Campbelltown		\$8.55/kWh		

Before balancing

2.4Maiting	Time			
		Charging station	Charging price	Queuing Length
			\$0.22/kWh	19
	St Marys			0
			\$0.12/kWh	42
				0
				0
			\$8.29/kWh	34
			\$0.31/kWh	52
	Olympic Park		\$0.3/kWh	16
	Burwood		\$8.34/kWh	9
			\$0.33/kWh	38
				6
			free of charge	31
			\$0.51/kWh	10
	Macquarie Pk		\$0.45/kWh	16
	Hornsby			0
				0
				14
			\$8.43/kWh	24
	Liverpool		\$0.28/kWh	47
	Leppington			0
	Campbelltown		\$0.44/kWh	25

After balancing

Nov 2023

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨト ヨヨ ろのべ

14/14

Nov 2023

Conclusion and Future Work

- A dynamic pricing strategy based on Stackelberg game for EV charging station is proposed.
- A number of real-life factors are considered, such as the remaining power of the electric vehicle, battery capacity, etc.
- Further improvement in the algorithm and the model

Thanks