Transport Research Centre

Sustainable Use of Recycled Crushed Glass for Soft Railway Subgrade Improvement

Isabella Novais Silva

PhD Student University of Technology Sydney

UTS CRICOS 00099F

Current challenges

Current challenges

Q

Glass waste management

news .com.au

National World Lifestyle Travel Entertainment Technology Finance Sport

technology environment

Australia's reliance on sending waste overseas for recycling is fuelling a crisis in the industry

Australia's appetite for sending waste overseas for recycling has created a huge problem that we are running out of time to fix.

Charis Chang OCharisChang2 🔲 22 comments

NOVEMBER 15, 2019 3:11PM

After China introduced its recycling restrictions, companies that couldn't find somewhere else to send their recycling were forced to stockpile the materials, creating a potentially hazardous situation.

There have been a number of fires at recycling facilities in the past few years including one massive blaze at a Melbourne warehouse that eventually saw one of Australia's biggest recyclers, SKM, go into receivership.

The 2017 fire at SKM's Coolaroo warehouse in Melbourne where piles of glass were stored. Picture: Seven

Background

Increasing demand for efficient freight and passenger rail network

Mud Pumping

Track misalignment

Excessive Settlement

Heavier and faster trains

Ballast degradation

Influence of track components on track deterioration

Faster track degradation

Challenging ground

conditions

Measures for subgrade improvement

No.	Solution	References	
1	Remove, replace and/or modify materials	Kuo et al. 2017; Li et al. 2016; Transport for NSW 2019	
2	Improve drainage	Abeywickrama 2020; Indraratna et al. 2009; Nguyen et al 2018	
3	Include geosynthetic composites	Alobaidi & Hoare 1998; Chawla & Shahu 2016; Hudson 2016	
4	Mass stabilisation	Ahmad et al. 2012; Transport for NSW 2019; Voottipruex and Roongthanne 2003; Wheeler et al. 2017	
		2003; Wheeler et al. 2017	

Traditional methods:

- Chemical additives
- Environmental impact
- Carbon emission
- Effect on groundwater

Sustainable method:

- Recycled crushed glass (CG) mixed with subgrade
 - soil

Waste glass transformed into sandsized crushed glass

(iQRenew, 2021)

Background

Objectives

- Address the challenges associated with soft subgrade soil in railway infrastructure by investigating the potential use of recycled crushed glass as a sustainable method of stabilisation
- Characterise the geotechnical properties and monotonic shear behaviour of CG and subgrade soil mixtures and determine the optimum CG percentage for practical applications

Materials and Methods

CG samples

Soil samples

- Rail track with high degree of fouling
- Depth of sample collection: 0.5 1 m
- CG samples obtained from local manufacturer

Materials and Methods

Soil specimen preparation

Investigation of shear behaviour

- RC = 95% $\gamma_{d,max}$
- *w* = 95% 100% *wopt*
- CG content = 10%, 20%, 30% and 50%

Material characterisation

CG content: 10%, 20%, 30% and 50%

UTS UTS

Compaction characteristics

	S2	S2 + 10% CG	S2 + 20% CG	S2 + 30% CG	S2 + 50% CG
$\sigma'_{ u c}$	59	91	148	171	329
C _c	0.206	0.189	0.177	0.175	0.160

uTS ₩

• S2 & 10%CG

Strain hardening

Behaves like compacted clayey soil Marginal shear strength improvement

• 20%CG & 30%CG

Transitional behaviour depending on p' and CG Behaves like silty sands and sandy silts • 50%CG

Behaves like dense sand Compared to the 30%CG, the shear strength increased by over 70% regardless of the initial p'

0.65

0.60

0.55

0.50

0.45

50 0

0.40 ¹ E² 04.0 0.35 0.30 0.25 0.20 150 740 130 (kda) 20 ,d 120 Effective Mean Stress High Modulus 110 Degradation 90 80 70 60 2

Incremental increase (%)	S2	S2 + 10% CG	S2 + 20% CG	S2 + 30% CG	S2 + 50% CG
φ _{cs}	-	2.8%	<mark>7.6%</mark>	3.4%	5.7%
q/p' cs	-	3%	<mark>8.2%</mark>	3.6%	6.1%

Particle breakage

Breakage Index – Marsal's Method

 $Bg = \sum_{1}^{n} \Delta W_k$, if $\Delta W_k > 0$

 $\Delta W_k = W_{ki} - W_{kf}$, where W_{ki} represents the percentage retained on sieve size k before the test and W_{kf} is the percentage retained on the same sieve size after the test.

- The addition of CG resulted in increased density and enhanced particle interlock within the soil matrix. This led to greater load-bearing capacity and reduced compressibility, thus enhancing the overall stability of the soil
- The addition of 20% CG led to an optimal soil-CG interaction which significantly increased the strength and stiffness of the soil and reduced the elastic modulus degradation
- The CG particles remained stable with minimal breakage under monotonic loading indicating the CG suitability for applications requiring robust and stable ground conditions
- In practical applications the CG-soil mixtures could be used as structural fill material for new embankments constructed for track structures.

Supervisors: Dist. Prof. Buddhima Indraratna Prof. Cholachat Rujikiatkamjorn Dr Thanh Nguyen

Transport Research Centre - UTS

Industry partners (SMEC, Coffey, Sydney Trains and ARTC)

THANK YOU!