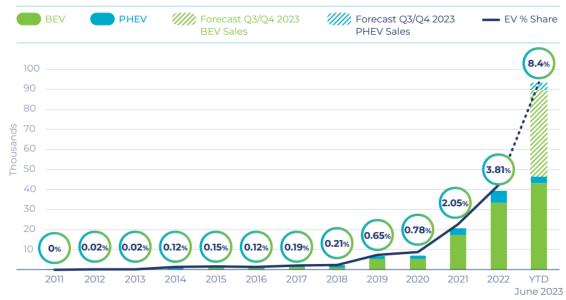
# U. O. W

# Optimizing the deployment of chargers for electric fleet considering heterogeneous chargers and electric vehicles

Presenter: Hao Hu

Supervisors: Dr. Bo Du and Professor Haiping Du






UNIVERSITY OF WOLLONGONG AUSTRALIA

# Background

#### EV SALES IN AUSTRALIA: 2011-2023





The NSW Government will set a target to electrify its passenger vehicle fleet of 12,000 cars by 2030, which will significantly reduce CO<sub>2</sub> emissions.



1: https://www.nsw.gov.au/driving-boating-and-transport/nsw-governments-electric-vehicle-strategy 2: https://electricvehiclecouncil.com.au/wp-content/uploads/2023/07/State-of-EVs\_July-2023\_.pdf

### Background

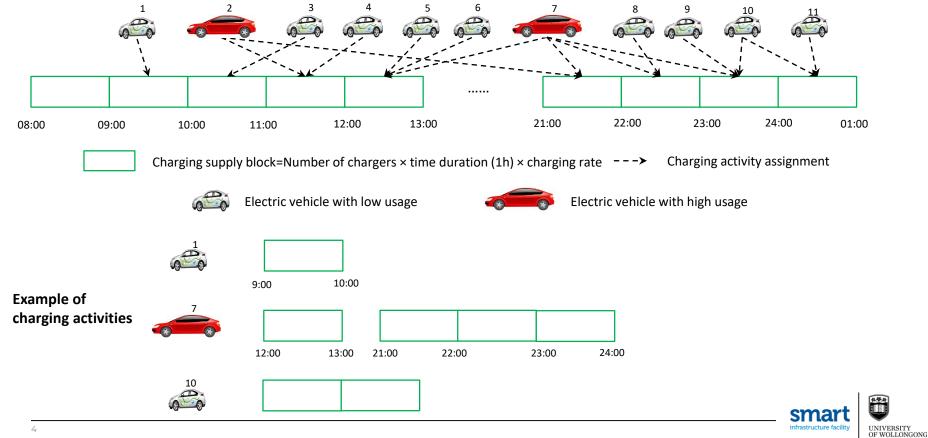


### Multi-type vehicles





Time-of-use electricity tariffs Limited power grid capacity

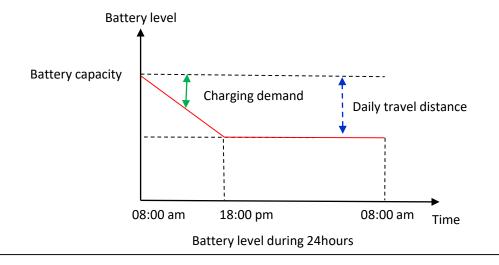

| Electric Vehicle<br>Charging Levels                  | 4         |                         |                        | Ęŗ                                           |  |
|------------------------------------------------------|-----------|-------------------------|------------------------|----------------------------------------------|--|
| and Range Chart                                      | Power     | Range added<br>per hour | Charging<br>time       | Typical application                          |  |
| Level 1<br>single phase<br>(domestic)                | 1.4-3.7kW | 10-20km<br>range/hour   | 5-16 hours             | Home                                         |  |
| Level 2 slow<br>single phase<br>(domestic or public) | 7kW       | 30-45km<br>range/hour   | 2-5 hours              | Home, work,<br>shopping centres<br>car parks |  |
| Level 2 fast<br>three-phase<br>(public)              | 11-22kW   | 50-130km<br>range/hour  | 30 minutes-<br>2 hours | Urban roadside                               |  |
| Level 3<br>Fast charge<br>(public)                   | 25-350kW  | 150-300km<br>range/hour | 10-60 mins             | Highways,<br>motorways and<br>key routes     |  |

### Multi-type chargers



### **Problem description**

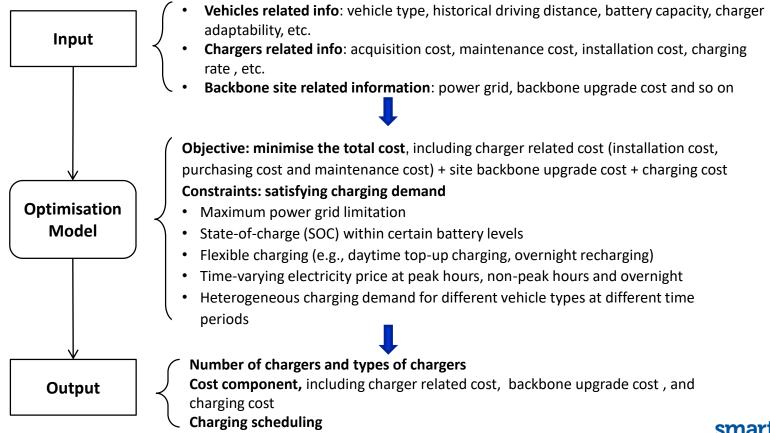
Deployment of chargers and charging scheduling




AUSTRALIA

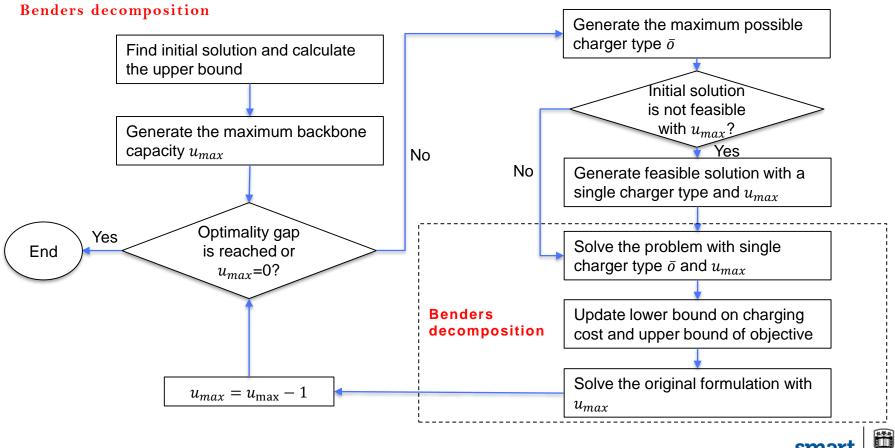
# Problem description

Assumptions


- Only a portion of electric vehicles will return to sites for top-up charging (e.g., no driving activity in the afternoon) during daily operation
- Each electric vehicle can only return to sites for top-up charging with limited times, such as 1-2 times a day
- A charging cycle is defined based on a certain period (e.g., one week or longer) rather than one day
- The energy consumption curve during a day is linear with time






# Mathematical model

Mixed-integer linear programming





# Solution algorithm



smar

nfrastructure facil

OF WOLLONGONG AUSTRALIA



7

### **Basic parameters**

### Vehicle types and corresponding specifications

| Vehicle type        | Model                   | Number of vehicles | Battery capacity<br>(kWh) | Driving range<br>(km) | On-board AC<br>charger<br>capacity (kW) | DC quick<br>charger<br>capacity (kW) |
|---------------------|-------------------------|--------------------|---------------------------|-----------------------|-----------------------------------------|--------------------------------------|
| Passenger<br>Light  | Hyundai Kona            | 480                | 39.2                      | 305                   | 7.2                                     | 100                                  |
| Passenger<br>Small  | Nissan Leaf             | 3602               | 39                        | 270                   | 6.6                                     | 100                                  |
| Passenger<br>Medium | MG MGZS                 | 1344               | 50.3                      | 320                   | 22                                      | 150                                  |
| Passenger<br>Large  | Hyundai Ioniq<br>5 EPIQ | 259                | 77.4                      | 454                   | 10.5                                    | 100                                  |
| SUV                 | Volvo XC40              | 2345               | 78                        | 420                   | 11                                      | 150                                  |
| People mover        | Ford E-transit<br>420 L | 300                | 68                        | 317                   | 11.5                                    | 150                                  |

#### Charger price and services cost

| Type of charger  | Price    | Annual maintenance per charger | Installation cost |
|------------------|----------|--------------------------------|-------------------|
| 3.8kW AC charger | \$1,200  | \$150                          | \$750             |
| 7.7kW AC charger | \$1,700  | \$150                          | \$900             |
| 22kw AC charger  | \$2,300  | \$150                          | \$900             |
| 50kW DC charger  | \$35,000 | \$375                          | \$4,500           |
| 100kW DC charger | \$58,000 | \$450                          | \$4,500           |
| 150kW DC charger | \$68,000 | \$450                          | \$4,500           |

# Annual driving distance and corresponding number of vehicles

| Annual distance (km) | Number of vehicles |
|----------------------|--------------------|
| <5000km              | 1453               |
| 5001-10000km         | 2951               |
| 10001-20000km        | 3152               |
| 20001-30000km        | 674                |
| 30001-40000km        | 11                 |
| 40001-50000km        | 5                  |
| 50001-60000km        | 68                 |
| 60001-70000km        | 36                 |
| 70001-80000km        | 5                  |
| 80001-90000km        | 4                  |
| 90001-100000km       | 5                  |
| >100000km            | 2                  |
| Total                | 8330               |

### Provided by NSW treasury



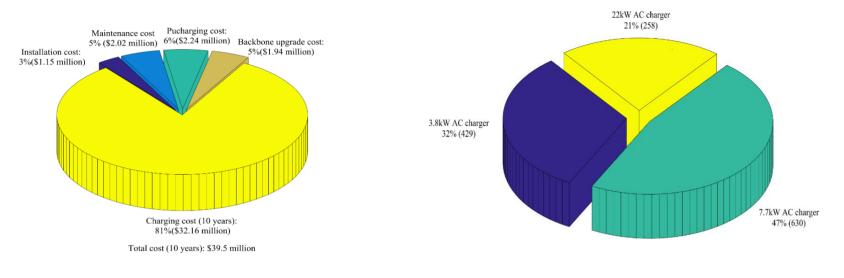
Efficiency of proposed method

| Number      | Number       | Pro     | Proposed method |         |         | Gurobi  |         |          |
|-------------|--------------|---------|-----------------|---------|---------|---------|---------|----------|
| of vehicles | of instances | Min     | Mean            | Max     | Min     | Mean    | Max     | -        |
| (0, 10]     | 710          | 4.6     | 24.5            | 289.7   | 0.3     | 15.0    | 1436.7  | 38.66%   |
| (10, 20]    | 97           | 86.1    | 242.9           | 961.5   | 23.0    | 260.4   | 1900.5  | -7.23%   |
| (20, 30]    | 40           | 240.0   | 440.0           | 1064.3  | 77.4    | 721.3   | 3626.8  | -63.94%  |
| (30, 40]    | 23           | 313.6   | 706.0           | 2208.9  | 92.7    | 1493.2  | 6349.5  | -111.51% |
| (40, 50]    | 15           | 895.3   | 11891.1         | 18097.3 | 5539.1  | 16224.3 | 18008.1 | -36.44%  |
| (50, 60]    | 8            | 2109.9  | 14029.5         | 18093.6 | 14823.9 | 17610.5 | 18010.1 | -25.52%  |
| (60, 70]    | 4            | 1952.3  | 10117.8         | 18056.6 | 18009.3 | 18009.6 | 18010.1 | -78.00%  |
| (70, 80]    | 1            | 2317.4  | 2317.4          | 2317.4  | 18011.1 | 18011.1 | 18011.1 | -677.21% |
| (80, 90]    | 1            | 3573.3  | 3573.3          | 3573.3  | 18011.7 | 18011.7 | 18011.7 | -404.07% |
| (90, 100]   | 2            | 5630.8  | 5777.8          | 5924.8  | 18012.9 | 18013.1 | 18013.4 | -211.77% |
| (100, 110]  | 2            | 4102.5  | 6580.3          | 9058.1  | 18014.5 | 18014.5 | 18014.5 | -173.77% |
| (170, 180]  | 2            | 18083.7 | 18085.9         | 18088.2 | 18023.9 | 18024.1 | 18024.3 | 0.34%    |
| (180, 190]  | 1            | 18078.7 | 18078.7         | 18078.7 | 18026.4 | 18026.4 | 18026.4 | 0.29%    |
| >200        | 1            | 18035.0 | 18035.0         | 18035.0 | 18055.4 | 18055.4 | 18055.4 | -0.11%   |

### Comparison of computational time between the proposed method and Gurobi

The proposed method outperformed commercial solver, Gurobi on both small and large-scale instances regarding the computational time




### Numerical experiments Efficiency of proposed method

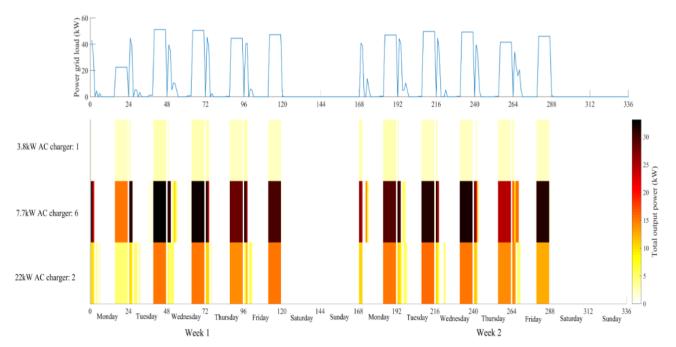
| Number      | Pro      | posed metho | bd     |          | Gap      |        |         |
|-------------|----------|-------------|--------|----------|----------|--------|---------|
| of vehicles | Obj      | Bound       | Gap    | Obj      | Bound    | Gap    | Gap     |
| 41          | 159859.9 | 158380.4    | 0.93%  | 160224.8 | 158273.1 | 1.22%  | -0.23%  |
| 41          | 203331.1 | 196651.9    | 3.28%  | 203713.5 | 191852.6 | 5.82%  | -0.19%  |
| 43          | 156548.8 | 155004.9    | 0.99%  | 156558.6 | 154992.5 | 1.00%  | -0.01%  |
| 45          | 185468.8 | 180847.1    | 2.49%  | 188076   | 179792.8 | 4.40%  | -1.39%  |
| 45          | 144784.5 | 143133.9    | 1.14%  | 144459.9 | 142444.9 | 1.39%  | 0.22%   |
| 46          | 177827.3 | 173485.7    | 2.44%  | 181664.3 | 171574.7 | 5.55%  | -2.11%  |
| 48          | 181165.6 | 177084.7    | 2.25%  | 181217.4 | 176504.8 | 2.60%  | -0.03%  |
| 48          | 188224.1 | 184275.2    | 2.10%  | 196216.8 | 173941   | 11.35% | -4.07%  |
| 49          | 196313.3 | 190449.6    | 2.99%  | 199047.9 | 189243.9 | 4.93%  | -1.37%  |
| 49          | 215716.2 | 211494.6    | 1.96%  | 215123.8 | 193080.3 | 10.25% | 0.28%   |
| 49          | 161307   | 159781.7    | 0.95%  | 163039.9 | 159212.1 | 2.35%  | -1.06%  |
| 50          | 212309.9 | 207386.1    | 2.32%  | 216821.7 | 193915.5 | 10.56% | -2.08%  |
| 53          | 203140.7 | 197953      | 2.55%  | 206854.7 | 184294.7 | 10.91% | -1.80%  |
| 54          | 201614.8 | 195012.8    | 3.27%  | 208953.9 | 186039.9 | 10.97% | -3.51%  |
| 56          | 209249.9 | 205340.4    | 1.87%  | 208902.7 | 186672.7 | 10.64% | 0.17%   |
| 56          | 199670.8 | 193506.4    | 3.09%  | 206038.8 | 182725.6 | 11.31% | -3.09%  |
| 58          | 174157.6 | 167860.3    | 3.62%  | 202238.6 | 164358.1 | 18.73% | -13.89% |
| 59          | 233683.9 | 231415.8    | 0.97%  | 233395.3 | 211196.8 | 9.51%  | 0.12%   |
| 59          | 120470.9 | 119278.8    | 0.99%  | 120682.1 | 119206   | 1.22%  | -0.17%  |
| 66          | 203511.7 | 197459.4    | 2.97%  | 211672.9 | 187781.9 | 11.29% | -3.86%  |
| 67          | 254335.9 | 251812.1    | 0.99%  | 253598.3 | 240772   | 5.06%  | 0.29%   |
| 68          | 257745.1 | 255209.8    | 0.98%  | 257463.9 | 236490.2 | 8.15%  | 0.11%   |
| 68          | 217379   | 211733.9    | 2.60%  | 217140.6 | 194538.9 | 10.41% | 0.11%   |
| 80          | 253092.8 | 250572.9    | 1.00%  | 252675.5 | 231926.5 | 8.21%  | 0.17%   |
| 84          | 250356.1 | 247862.2    | 1.00%  | 250078.2 | 229217.3 | 8.34%  | 0.11%   |
| 92          | 259301.4 | 256692      | 1.01%  | 258915.2 | 239165.9 | 7.63%  | 0.15%   |
| 95          | 276610.3 | 274390.7    | 0.80%  | 276155.3 | 266219.1 | 3.60%  | 0.16%   |
| 105         | 296623.9 | 293703.8    | 0.98%  | 296649.7 | 291899.4 | 1.60%  | -0.01%  |
| 107         | 271269.1 | 268564.5    | 1.00%  | 271622.6 | 266510.3 | 1.88%  | -0.13%  |
| 173         | 427059.2 | 392020      | 8.20%  | 581916.5 | 398979.8 | 31.44% | -26.61% |
| 176         | 357319.2 | 320845.6    | 10.21% | 510773.7 | 328004.4 | 35.78% | -30.04% |
| 192         | 429475.5 | 391848.3    | 8.76%  | 541239.8 | 393016.8 | 27.39% | -20.65% |
| 392         | 752593.8 | 613325      | 18.51% | 857727.2 | 604278.4 | 29.55% | -12.26% |
| Average     |          |             | 3.01%  |          |          | 9.85%  | -3.84%  |

The proposed method outperformed commercial solver, Gurobi on both small and large-scale instances regarding the quality of solution



#### Cost breakdown and Components of installed chargers

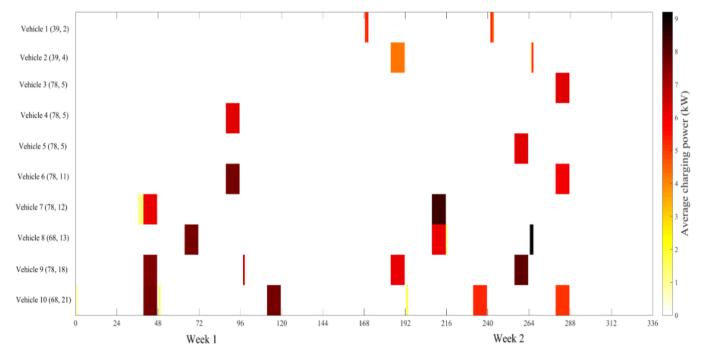



### Cost breakdown

**Components of installed chargers** 

Charging cost is the majority, accounting for more than 81%. The main chargers are 7.7kW AC charger and no fast DC charger is needed.




An example of the output power of chargers and power grid load at a site



Three types of chargers are in high usage during the morning and overnight periods. No charging activity occurs between peak hours (from 14 pm to 20pm) each day due to peak-hours electricity prices



#### An example of charging activities



When the daily energy consumption ranges from 4 to 21kWh, both the frequency of overnight charging and the charging power during overnight increases gradually.



### Conclusion and future work

- The joint optimisation problem of deployment of chargers and charging scheduling at a backbone site was investigated
- Multiple practical considerations was considered, such as time-varying electricity, power grid limitation and electric vehicles' adaptability to different chargers
- The proposed method outperformed the Gurobi in both finding better solutions and saving computational time.
  - Stochastic energy consumption and charging demand of electric vehicles should be taken into account





# Thank you !



UNIVERSITY OF WOLLONGONG AUSTRALIA