Adaptive Behaviour of Intelligent Agents under Schedule Disturbances in Rail Systems

Kevin Malysiak¹

Supervisors: Dr Fenghui Ren^1 Dr Bo Du^2

¹School of Computing and Information Technology University of Wollongong

> ²SMART Infrastructure Facility University of Wollongong

km812@uowmail.edu.au, fren@uow.edu.au, bdu@uow.edu.au

9 November, 2023

Contents

Introduction

Research Challenges

Solution Approach

Agent Design

Status and the Future

Conclusion

Motivation

The Real World has Problems

"... on the Dutch rail network (more than 5,000 daily trains), on average 10 disruptions of a route occur per day. Delays occur more frequently: On average 450 trains experience one or more delays (> 3 minutes) per day. These delays lead to removal of on average 10 train services per day" (Abbink et al., 2009)

Importance

- Importance of public, mass transportation systems
- Operational problems have a significant impact on services and, thus, society

Solution

- Intelligent management and utilisation of resources
- Adaptive monitoring and rescheduling of services
- Smart modelling, intelligent agents and simulation

Challenges

Dynamism

- Environment subject to change
- Preconditions for action change before or during action realisation

Complexity

- Numerous entities to coordinate
- Competing objectives
- Constraints on time for action

Uncertainty

- Environmental events cannot be predicted
- Incomplete or uncertain information

Solution Approach

- Multi-agent model based on Intelligent agents suitable for complex, adaptive systems
- Simulated rail environment
- Interaction between agents and environment
- *Monitoring* for disturbances and *adaptive*, real-time rescheduling

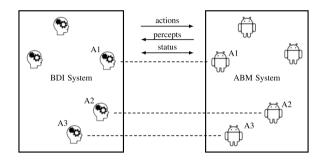


Figure: Padgham et al. (2014)

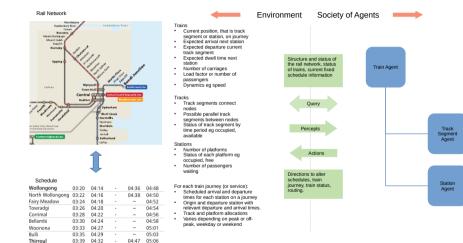
Elements

Domain Formalisation

- Domain description
- Mathematical formulation

Mechanism Model

- Protocols and agent data interchange
- Core algorithms


Conceptual Model

- Description of agent model
- Agent environment model

Detailed Agent Model

- Objectives, behaviours and knowledge for agent types
- Properties, state transitions, goal-plan trees, elaboration of agent plans

Agent Based Simulation Model

Line Agent

Model Considerations

Delays, Disturbances and Disruptions

A *disturbance* is considered a relatively small incident while a *disruption* is a relatively large, external incident. Initial focus on delays introduced through disruptions.

Remedial Actions

Options include re-routing, re-timing, reordering, changed speed profile, service modification, bridging services or combinations thereof.

Characteristics

- Decentralised control
- Decentralised knowledge; no global knowledge
- Cooperative agent behaviour with negotiation for decision-making
- Multi-Agent System interacting with Environment Simulation

Component Interaction

Multi-Agent System

- Agent behaviour; proactive and reactive
- Continual perception of changes in the environment
- Agent decision-making to determine course of action required to achieve goals
- Initiation of actions in the environment based on changes in the agent's knowledge base

Platform

Platform provided by *Jadex*, a (BDI) agent system based on *Jade*. Component development is undertaken in Java.

Environment Simulation

- Move trains through space and time
- Provide agents with updates ie position of a train
- Inject specified or randomly generated disturbances
- Interface with visualisation

Train Agents

Goals and Objectives

- Complete a trip according to schedule
- Adapt to any disturbances or disruptions

Knowledge

- An itinerary denoted as a sequence of stops with associated arrival and departure times
- The current position in space and time
- The schedule status, that is one of {*onTime*, *early*, *late*}

Plans and Actions

- Travel at normal, increased or reduced speed
- Arrive, wait at and depart from a station
- Stop between stations
- Negotiate with station agents to vary itinerary

Station Agents

Goals and Objectives

- Facilitate flow of trains through station according to schedule
- Adapt to disturbances or disruptions
- Manage traffic flow within safety constraints

Knowledge

- Scheduled services denoted by the sequence of arrivals and departures with associated times
- Services pending arrival and departed
- Resources at station such as the number of platforms
- Available track resources for entry and exit from station

Plans and Actions

- Manage train arrivals and departures
- Negotiate with trains and stations to vary schedule

Status and the Future

Status

- Single train on single track traversing multiple stations on a trip
- Extending to multiple trains in both directions
- Injection of simple disturbances
- Ongoing experimental work

Future

- Increase complexity of scenarios coordinated agent actions
- Extend design accordingly
- Extend experimental work and analysis of results

Conclusion

Why?

- Importance of public, mass transportation systems
- Operational problems have a significant impact on services and society

What?

- Intelligent management and utilisation of resources
- Adaptive monitoring and rescheduling of services
- Smart modelling, intelligent agents and simulation

How?

- Staged research
- Incremental increase in complexity with stages
- Stepwise development and refinement of solution
- Application to real transport network

Questions

References

- Abbink, Erwin JW, David GA Mobach, Pieter J Fioole, Leo G Kroon, Eddy HT van der Heijden and Niek JE Wijngaards. 2009. Actor-agent application for train driver rescheduling. In *Proceedings of The 8th International Conference on Autonomous Agents and Multiagent Systems-Volume 1.* International Foundation for Autonomous Agents and Multiagent Systems pp. 513–520.
- Padgham, Lin, Kai Nagel, Dhirendra Singh and Qingyu Chen. 2014. Integrating BDI agents into a MATSim simulation. IOS Press pp. 681–686. URL: https://doi.org/10.3233/978-1-61499-419-0-681