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Background

What do we know about traffic accidents?

Statistics: The annual economic cost of road crashes in Australia was estimated at $27 billion
in 2017 [1]. Over 5 million accidents happen annually in the United States [2]. Also, accidents
result in 1.35 million fatalities worldwide in 2016.

Congestion: Traffic accidents pose significant challenges to modern transportation systems,
affecting traffic flow and public safety.

Prediction: Accurate modelling of traffic accidents is crucial for intelligent transportation
systems, for reducing traffic congestion and economic cost associated with accidents.

Large Language Models: These models hold considerable promise for addressing the
complexities associated with processing unstructured datasets and enhancing the efficiency
of accident modelling.

[1] https://infrastructure.gov.au/roads/safety/,

[2] National Highway Traffic Safety Administration. Traffic safety facts 2013. U.S. department of transportation, 2013.
[3] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N. & Polosukhin, I. (2017). Attention is all
you need. Advances in neural information processing systems, 30.
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Current Limitations & Potential of LLMs

Limitations of Traditional Models:

- Accident Report Format: Models built on structured/tabular data often
can't transfer between systems due to using different accident report
formats.

- Linguistic Features: Inability to capture complex linguistic features in
textual accident reports.

Potential of Language Models:

- Leveraging Unstructured Accident Report representation: Traffic
incident reports and other related text data represent a rich source of
information that is often underutilized in traditional predictive models.
- Model Transferability (e.g. between countries): Aim to develop a
universally applicable model (cross-dataset) by leveraging language
models.
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Existing research: incident severity classification / duration prediction
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Oliaee, A. H., Das, S., Liu, J., & Rahman, M. A. (2023).
Using Bidirectional Encoder Representations from
Transformers (BERT) to classify traffic crash severity

types.
Natural Language Processing Journal, 3, 100007.

Agrawal, P., Franklin, A., Pawar, D., & Srijith, P. K.
(2021, September).

Traffic Incident Duration Prediction using BERT
Representation of Text.

In 2021 IEEE 94th Vehicular Technology Conference.
IEEE.
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Figure 1. The input and output of the BERT model when
doing classification tasks.

Yuan, S., & Wang, Q. (2022, February).
Imbalanced traffic accident text classification
based on Bert-RCNN.

In Journal of Physics: Conference Series (Vol.
2170, No. 1, p. 012003). IOP Publishing.




LLM for text-to-dataframe processing Zheng, O., Abdel-Aty, M., Wang, D., Wang, Z., & Ding, S. (2023). ChatGPT is on the
horizon: Could a large language model be all we need for Intelligent
Transportation?. arXiv preprint arXiv:2303.05382.
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Figure 1 Example of accident information extraction through ChatGPT.
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Novel Approach: Application of LLMs in traffic accident modelling

Accident report
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FIGURE 1 The benefit of using LLM models
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Incident description:
‘Entry ramp to 1-81

St closed due to stalled
truck.’

Southbound from 7th North

Novel Approach: Diagram

Baseline Accident
Report Features:
Distance{(mi)
Temperature(F)
Side

Start_Time

Full-text representation

Accident 1D A-2760450, Source Source?2, Start
Latitude 43.090641, Start Longitude -76.168594,
Accident extent (miles) 0.49, Description Entry
ramp to I-81 Southbound from 7th North St closed
due to stalled truck., Street 7th North St, City
Liverpool, County Onondaga, State NY, ZipCode
13088, Timezone US/Eastern, Airport Code KSYR,
Temperature (F) 62.1, Humidity (%) 72.0, Pressure
(inch) 29.86, Visibility (miles) 10.0, Wind Direction
WNW, Wind Speed (mph) 15.0, Weather Condition
Overcast, Traffic Signal, Sunrise/Sunset Day, Civil
Twilight Day, Nautical Twilight Day, Astronomical
Twilight Day, Start_Time_hour 14,
Start_Time_month 6, Weather_Timestamp_hour
14, Weather_Timestamp_month 6
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Datasets

1. Countrywise Traffic Accident Dataset (USA) — 25,000 cases (even severity class sampling)

https://smoosavi.org/datasets/us_accidents

2. Road Safety Data (UK) 2018,2019,2020,2021 — 20,000 cases (even severity class sampling)

https://www.data.gov.uk/dataset/cb7ae6f0-4be6-4935-9277-47e5ce24a11f/road-safety-data

3. Queensland Road crash data (Q) — 25,000 cases (even severity class sampling)

https://www.data.qld.gov.au/dataset/crash-data-from-queensland-roads/resource/e8894 3c0-5968-4972-a15f-38e120d72ec0
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Road Safety Data (UK)

Histogram of Accident Severity
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Queensland Road crash data (Q)

Histogram of Accident Severity
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Full text representation

Example of full text representation for USA data set:

r-------------------------
Accident |ID A-7463401, Source Sourcel, Start Latitude 32.68116, Start
Longitude -97.02426, End Latitude 32.67618, End Longitude -97.03483, i
Accident extent (miles) 0.7040000000000001, Description Ramp to 1-20 |
Westbound - Accident., Street President George Bush Tpke S, City
Grand Prairie, County Dallas, State TX, ZipCode 75052, Timezone
US/Central, Airport Code KGPM, Temperature (F) 48.2, Humidity (%)
75.0, Pressure (inch) 30.26, Visibility (miles) 10.0, Wind Direction
South, Wind Speed (mph) 5.8, Weather Condition Mostly Cloudy,
Junction, Sunrise/Sunset Night, Civil Twilight Night, Nautical Twilight
Night, Astronomical Twilight Night, Start_Time_hour 22,
Start_Time_month 1, Weather_Timestamp_hour 22,
Weather_Timestamp_month 1

| s B 2 08 8 2 8 8 B 0 2 B ' J3 2 2 B B B B 0B 37 B B |

Example of full text representation for UK data set:
r-------------------------1

accident_index: 2018460317259, accident_year: 2018,
accident_reference: 460317259, location_easting_osgr: 556147.0,
location_northing_osgr: 165830.0, longitude: 0.241871, latitude:
51.370065, police_force: 46, number_of vehicles: 1,
number_of casualties: 1, date: 08/08/2018, day_of week: 4, time:
11:35, local_authority_district: 538, local_authority_ons_district:
EQ7000111, local _authority _highway: E10000016, first_road class: 3,
first_road_number: 20, road_type: 6, speed_limit: 60, junction_detail:
3, junction_control: 4, second_road_class: 6, second_road_number: 0,
pedestrian_crossing_human_control: 0,
pedestrian_crossing_physical_facilities: 0, light_conditions: 1,
weather_conditions: 1, road_surface_conditions: 1,
special_conditions_at_site: 0, carriageway_hazards: 0,
urban_or_rural_area: 2, did_police_officer_attend_scene_of_accident:
1, trunk_road_flag: 2, Isoa_of accident_location: E01024433

e ———

ZUTS

Example of full text representation for
Queensland (Australia) data set:

r--------------------------
Crash_Ref Number: 28863.0, Crash_Year: 2004.0, Crash_Month:
September, Crash_Day_ Of Week: Wednesday, Crash_Hour: 6.0,
Crash_Nature: Angle, Crash_Type: Multi-Vehicle, Crash_Longitude:
152.872284325108, Crash_Latitude: -27.5455985592659, Crash_Street:
Kangaroo Gully Rd, Crash_Street_Intersecting: Mount Crosby Rd,
State_Road_Name: Mount Crosby Road, Loc_Suburb: Anstead,
Loc_lLocal_Government_Area: Brisbane City, Loc_Post_Code: 4070,
Loc_Police_Division: Indooroopilly, Loc_Police_District: North Brisbane,
Loc_Police_Region: Brisbane, Loc_Queensland_Transport_Region: SEQ
North, Loc_Main_Roads_Region: Metropolitan,

Loc_ABS Statistical Area_2: Pinjarra Hills - Pullenvale,

Loc_ABS Statistical Area_3: Kenmore - Brookfield - Moggill,

Loc_ABS_ Statistical Area_4: Brisbane - West, Loc_ABS_Remoteness:
Major Cities, Loc_State Electorate: Moggill, Loc_Federal_Electorate:
Ryan, Crash_Controlling_Authority: State-controlled,
Crash_Roadway_Feature: Intersection - T-Junction,
Crash_Traffic_Control: No traffic control, Crash_Speed_Limit: 70 km/h,
Crash_Road Surface Condition: Sealed - Dry,
Crash_Atmospheric_Condition: Clear, Crash_Lighting_Condition:
Daylight, Crash_Road_Horiz_Align: Curved - view open,
Crash_Road_Vert_Align: Level, Crash_DCA_Code: 202.0,
Crash_DCA_Description: Veh'Ss Opposite Approach: Thru-Right,
Crash_DCA_Group_Description: Opposing vehicles turning,

DCA_Key Approach_Dir: E, Count_Unit_Car: 1.0,
Count_Unit_Motorcycle_Moped: 1.0, Count_Unit_Truck: 0.0,
Count_Unit_Bus: 0.0, Count_Unit_Bicycle: 0.0, Count_Unit_Pedestrian:
0.0, Count_Unit_Other: 0.0
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LLM models

Model Number of pa- | Training Method Notable Features
rameters

BERT [9] 110 mul Masked Language Modeling (MLM) Bidirectional context, Pretrain-finetune dis-
crepancy

BERT-large [9] 345 mul Masked Language Modeling (MLM) Bidirectional context, Pretrain-finetune dis-
crepancy

XLNet [10] 110 mul Generalized Autoregressive Pretraining Overcomes BERT limitations, Transformer-XL
integration

XLNet-large [10] 340 ml Generalized Autoregressive Pretraining Overcomes BERT limitations, Transformer-XL

integration

GPT-2 [11]

1.5 billion

Autoregressive Language Modeling

Large-scale unsupervised, Zero-shot learning

RoBERTa [13] 125 mul Optimized BERT (MLM with changes) Longer training, Removed next sentence pre-
diction, Dynamic masking

RoBERTa-large [13] 355 mul Optimized BERT (MLM with changes) Longer training, Removed next sentence pre-
diction, Dynamic masking

ALBERT [14] 18.2 mul Optimized BERT (MLM with changes) Sentence Ordering Prediction. Layer-Sharing
Architecture, Reduced Memory Footprint

ALBERT-large [14] 223 mil Optimized BERT (MLM with changes)

Sentence Ordering Prediction, Layer-Sharing
Architecture, Reduced Memory Footprint
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Queensland: Performance of LLM models
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UK: Performance of LLM models

Heat Map of Average F1 Score Sorted by Features
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USA: Performance of LLM models

Heat Map of Average F1 Score Sorted by Features
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Q UK

Overall performance of LLM models (NLP features only)
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Research Summary

Goal: Improve traffic management and emergency response through more accurate severity
classification and accident duration prediction.
Motivation: Traditional Machine Learning Approaches show reasonable accuracy but have

the limitation of structured report representation.

Current Study
- Model Variety: We use 8 large language models (BERT, XLNet, RoBERTa, etc.).

- Datasets: We apply models to 3 diverse accident data from USA, UK, and Australia.

Implications

- Higher performance: Language models can outperform traditional machine learning in
some scenarios.

- Global Transferability: LLM promise more accurate and universally applicable traffic
management solutions, unconstrained to reporting format (which can vary across

countries/cities).




Conclusion

- Leveraging Unstructured Accident Report representation: Traffic incident reports and other
related text data represent a rich source of information that is often underutilized in traditional
predictive models.

- The use of LLMs for accident severity classification: This study presents a comprehensive
comparison of various machine learning (including Random Forest and XGBoost) and large
language models (BERT, RoBERTa, and Albert, etc) for feature extraction from textual accident
report representation for the task of classification of traffic accident severity.

- Insights: The findings of our study offer valuable insights into the performance of different ML-
LLM model combinations, which can support the development of future Traffic
Incident Management Systems (TIMS).
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Future research on Applications of LLMs in traffic accident modelling

Before:
Accident report Accident report Accident report
(table data from USA) (table data from UK) (table data from Queensland)

i i i
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(dataset specific) (dataset specific) (dataset specific)
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ML Models fine-tuned to data sets
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